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a b s t r a c t 

The coupled Gross–Pitaevskii system studied in this paper is an important mathematical 

model describing spin-1 Bose-Einstein condensate. We propose a linearized and decoupled 

compact finite difference scheme for the coupled Gross–Pitaevskii system, which means 

that only three tri-diagonal systems of linear algebraic equations at each time step need 

to be solved by using Thomas algorithm. New types of mass functional, magnetization 

functional and energy functional are defined by using a recursive relation to prove that 

the new scheme preserves the total mass, energy and magnetization in the discrete sense. 

Besides the standard energy method, we introduce an induction argument as well as a 

lifting technique to establish the optimal error estimate of the numerical solution without 

imposing any constraints on the grid ratios. The convergence order of the new scheme 

is of O (h 4 + τ 2 ) in the L 2 norm and H 

1 norm, respectively, with time step τ and mesh 

size h . Our analysis method can be used to high dimensional cases and other linearized 

finite difference schemes for the two- or three-dimensional nonlinear Schrödinger/Gross–

Pitaevskii equations. Finally, numerical results are reported to test the theoretical results. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

At a temperature much lower than the critical temperature T c , the spin-1 Bose–Einstein condensate (BEC) are well de- 

scribed by the following coupled Gross–Pitaevskii equations (CGPEs) [8,14,21,30–34] : 

i h̄ ∂ t ψ 1 (x , t) = 

[
− h̄ 

2 

2 m 

∇ 

2 + V (x ) + (C 0 + C 2 ) 
(| ψ 1 | 2 + | ψ 0 | 2 

)
+ (C 0 − C 2 ) | ψ −1 | 2 

]
ψ 1 

+ C 2 ψ −1 ψ 

2 
0 , x ∈ R 

3 , t > 0 , (1.1) 

i h̄ ∂ t ψ 0 (x , t) = 

[
− h̄ 

2 

2 m 

∇ 

2 + V (x ) + (C 0 + C 2 ) 
(| ψ 1 | 2 + | ψ −1 | 2 

)
+ C 0 | ψ 0 | 2 

]
ψ 0 

+ 2 C 2 ψ −1 ψ 0 ψ 1 , x ∈ R 

3 , t > 0 , (1.2) 
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i h̄ ∂ t ψ −1 (x , t) = 

[
− h̄ 

2 

2 m 

∇ 

2 + V (x ) + (C 0 + C 2 ) 
(| ψ −1 | 2 + | ψ 0 | 2 

)
+ (C 0 − C 2 ) | ψ 1 | 2 

]
ψ −1 

+ C 2 ψ 

2 
0 ψ 1 , x ∈ R 

3 , t > 0 , (1.3) 

where x = (x, y, z) is the spatial cartesian coordinate vector, t is time, � is the plank constant, m is the atomic mass, V ( x ) is 

the external trapping potential, and �(x , t) = (ψ 1 (x , t) , ψ 0 (x , t) , ψ −1 (x , t)) � is the three-component wave function. When 

a harmonic trap potential is considered, 

V (x ) = 

m 

2 

(ω 

2 
x x 

2 + ω 

2 
y y 

2 + ω 

2 
z z 

2 ) , (1.4) 

with ω x , ω y and ω z being the trap frequencies in the x −, y − and z− direction, respectively. f denotes the conjugate of the 

complex-valued function f . There are two atomic collision terms C 0 = 

4 π h̄ 2 

3 m 

(a 0 + 2 a 2 ) and C 2 = 

4 π h̄ 2 

3 m 

(a 2 − a 0 ) expressed in 

terms of the s −wave scattering lengths a 0 and a 2 for a scattering channel of total hyperfine spin 0 (antiparallel spin collision) 

and spin 2 (parallel spin collision), respectively. The usual mean-field interaction C 0 is positive for repulsive interaction and 

negative for attractive interaction. The spin-exchange interaction C 2 is positive for antiferromagnetic interaction and negative 

for ferromagnetic interaction. The wave function is normalized according to 

|| �|| 2 := 

∫ 
R 3 

| �(x , t) | 2 dx = 

∫ 
R 3 

1 ∑ 

l= −1 

| ψ l (x , t) | 2 dx := 

1 ∑ 

l= −1 

|| ψ l || 2 = N, (1.5) 

where N is the total number of particles in the condensate. 

By introducing the dimensionless variables: t → t / ω m 

with ω m 

= min { ω x , ω y , ω z } , x → x a s with a s = 

√ 

h̄ 
mw m 

and ψ l → 

√ 

N ψ l /a 3 / 2 s (l = −1 , 0 , 1) , one can get the dimensionless CGPEs from (1.1) –(1.3) as [9,32,34] : 

i∂ t ψ 1 (x , t) = 

[ 
−1 

2 

∇ 

2 + V (x ) + (βn + βs )(| ψ 1 | 2 + | ψ 0 | 2 ) + (βn − βs ) | ψ −1 | 2 
] 
ψ 1 + βs ψ −1 ψ 

2 
0 , (1.6) 

i∂ t ψ 0 (x , t) = 

[ 
−1 

2 

∇ 

2 + V (x ) + (βn + βs )(| ψ 1 | 2 + | ψ −1 | 2 ) + βn | ψ 0 | 2 
] 
ψ 0 + 2 βs ψ −1 ψ 0 ψ 1 , (1.7) 

i∂ t ψ −1 (x , t) = 

[ 
−1 

2 

∇ 

2 + V (x ) + (βn + βs )(| ψ −1 | 2 + | ψ 0 | 2 ) + (βn − βs ) | ψ 1 | 2 
] 
ψ −1 + βs ψ 

2 
0 ψ 1 , (1.8) 

where βn = 

Nc 0 
a 3 s ̄h ω m 

= 

4 πN(a 0 +2 a 2 ) 
3 a s 

, βs = 

Nc 2 
a 3 s ̄h ω m 

= 

4 πN(a 2 −a 0 ) 
3 a s 

and V (x ) = 

1 
2 (γ

2 
x x 

2 + γ 2 
y y 

2 + γ 2 
z z 

2 ) with γx = 

ω x 
ω m 

, γy = 

ω y 
ω m 

, γz = 

ω z 
ω m 

. Similar to those in a single-component BEC [4,6,14,21] , in a disk-shaped condensation, i.e., ω x ≈ω y and ω z 	ω x ( ⇔ γ x , 

γ y ≈ 1 and γ z 	 1 with ω m 

= ω x ) , the three-dimensional (3D) CGPEs (1.6) –(1.8) can be reduced to 1D CGPEs. In this paper, 

we mainly consider the numerical method for the dimensionless CGPEs in one dimension. We here consider the 1D CGPEs 

on a bounded computational domain [ a , b ] × [0, T ], 

i∂ t ψ 1 (x, t) = 

[ 
−1 

2 

∂ xx + V (x ) + (βn + βs )(| ψ 1 | 2 + | ψ 0 | 2 ) + (βn − βs ) | ψ −1 | 2 
] 
ψ 1 

+ βs ψ −1 ψ 

2 
0 , (x, t) ∈ (a, b) × (0 , T ] , (1.9) 

i∂ t ψ 0 (x, t) = 

[ 
−1 

2 

∂ xx + V (x ) + (βn + βs )(| ψ 1 | 2 + | ψ −1 | 2 ) + βn | ψ 0 | 2 
] 
ψ 0 

+ 2 βs ψ −1 ψ 0 ψ 1 , (x, t) ∈ (a, b) × (0 , T ] , (1.10) 

i∂ t ψ −1 (x, t) = 

[ 
−1 

2 

∂ xx + V (x ) + (βn + βs )(| ψ −1 | 2 + | ψ 0 | 2 ) + (βn − βs ) | ψ 1 | 2 
] 
ψ −1 

+ βs ψ 

2 
0 ψ 1 , (x, t) ∈ (a, b) × (0 , T ] , (1.11) 

with boundary condition 

ψ l (a, t) = ψ l (b, t) = 0 , l = −1 , 0 , 1 , t ∈ (0 , T ] , (1.12) 

and initial condition 

ψ l (x, 0) = φl (x ) , l = −1 , 0 , 1 , x ∈ [ a, b] , (1.13) 
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