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1. Introduction

It is well-known that standard Runge-Kutta (RK) methods, partitioned Runge-Kutta (PRK) methods and Runge-Kutta-
Nystrom (RKN) methods play a central role in the field of numerical solution of ordinary differential equations (ODEs), and
they were well-developed in the previous investigations [3,7,8].

More recently, numerical methods with infinitely many stages including continuous-stage Runge-Kutta (csRK) methods,
continuous-stage partitioned Runge-Kutta (csPRK) methods have been investigated and discussed in [4,10,11,17-20]. Based
on such methods, it was shown in [18,19] that simply by using quadrature formulae it offers plentiful RK and PRK methods
of arbitrary-order accuracy, without resort to solving the tedious nonlinear algebraic equations that stem from the order
conditions with many unknown coefficients. The construction of continuous-stage numerical methods seems easier than
that of those classical methods, since the associated Butcher tableau coefficients belong to the space of continuous functions
and they can be treated with orthogonal polynomial expansion techniques [18,19]. Moreover, as shown in [18,19], numerical
methods serving some special purposes including symplecticity-preserving methods for Hamiltonian systems, symmetric
methods for time-reversible systems, energy-preserving methods for conservative systems, conjugate-symplectic (up to a
finite order) methods for Hamiltonian systems can also be constructed and investigated based on such a new framework.

It is worth mentioning that some integrators with special purposes could not possibly exist in the classical context of nu-
merical methods but they do within the new framework. For instance, in [5] it was shown that there is no energy-preserving
RK methods for general non-polynomial Hamiltonian systems, but energy-preserving methods based on csRK obviously ex-
ist [2,4,10,11,13,17,19,20]. It is also found that some Galerkin variational methods can be related to continuous-stage (P)RK
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methods, which can not be completely explained in the classical (P)RK framework [20-22]. As a consequence, continuous-
stage methods provide us a new broader scope for numerical solution of ODEs and they are worth further investigating.

As is well known, second-order ODEs are commonly encountered in various fields including celestial mechanics, molecu-
lar dynamics, biological chemistry, theoretical physics and so on [7,9,14]. In this paper, we are going to develop continuous-
stage RKN (csRKN) methods for solving second-order ODEs written in the form § = f(t, q). In practical applications, there
are a number of second-order ODEs which can be reduced to first-order ODEs with the form of separable Hamiltonian sys-
tems, and symplecticity-preserving discretization for such special systems is of remarkable interest [6,9,14]. For this sake,
we will explore sufficient conditions for a ¢csRKN method to be symplectic, and then show the construction of symplectic
RKN-type integrators by using polynomial expansion techniques.

The outline of this paper is as follows. In the next section, we introduce the so-called csRKN methods for solving second-
order ODEs. After that we present the corresponding symplectic conditions and the order conditions, then we use the or-
thogonal polynomial expansion technique to construct symplecticity-preserving RKN-type methods, which will be shown
in Sections 3 and 4. Section 5 is devoted to discuss the construction of diagonally implicit symplectic methods. Numerical
results will be shown in Section 6. At last, concluding remarks will be given.

2. Continuous-stage RKN method

Let us consider an initial value problem of second-order ODEs

G=f(q), qto) =qo, 4(to) = po, (2.1)
where the double dots on q represent the second-order derivative with respect to t and f:R x RY — R? is a sufficiently
smooth vector-valued function.

For system (2.1), the often used treatment is to write it as a first-order differential system by introducing p = ¢, namely

S f(t .
p=f(t.q), ¢=p, (2.2)
p(to) = po. q(to) = qo.

As presented in [18], by using a continuous-stage partitioned Runge-Kutta (csPRK) method to solve (2.2), it gives
1
Py = pa+h / Aco f(ta+Coh, Qp)do, T €[0,1], (232)
0
1 ~
Qr =gn +h/ AroPrdo, T€l0,1], (2.3b)
0
1
Pnt1 = Pn+ hfo B f(tn +Cch,Qr)dT, neN, (2.3¢)
] A
i = Gn + h/ B.P.dr, neN, (2.3d)
0
where A; 5, /A\I,g are functions of two variables 7, o €[0, 1], and B, B;, C; are functions of T [0, 1] satisfying [18]
1 1 1 1
/ Argdo = / Arodo =G / B.dt :/ B.dt = 1.
0 0 0 0
We call Q; and P; the internal continuous stages.
By inserting (2.3a) into (2.3b), we derive
1 1
Q =qu+h /0 Avo(pn+h /0 Ao f(tn +Coh. Q,)dp)do (2.4)
1 -
_— +hCTpn+h2/ Avo f(ta + Coh, Qy)do, (2.5)
0
where we denote A ; = [y Az pAp o dp.
Similarly, by inserting (2.3a) into (2.3d), we have
1 1
Gnst = Gn + h/o Be (pu+ h/o Avo f(tn +Coh, @y )do)dT (2.6)
l -
_ +hpn+h2[ Br f(ta + Coh, Qp)dr, (2.7)
0

where we define B; = fol ByAp -dp.
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