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a b s t r a c t 

The radiative transfer equation (RTE) has wide applications in sciences and engineering. 

Due to high dimensionality and integro-differential nature, the equation is difficult to solve 

numerically. In the literature, several approximation methods for solving the RTE numer- 

ically have been developed. Among them, a family of differential approximations of RTE, 

the so-called RT/DAE was proposed. In this paper, we establish a framework of the splitting 

method for RT/DAE and provide convergence analysis. We introduce the classic source it- 

eration method, compare it with the new splitting method and prove the splitting method 

has superior convergence properties. Finally, we provide numerical examples demonstrat- 

ing the effectiveness of the splitting method. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

As a forward model to describe the propagation or radiation of particles inside a medium, the radiative transfer equation 

(RTE) has wide applications in such as physics, chemistry, and other areas of sciences and engineering, see [10,12–16,20,21] . 

Let X be a domain in R 

3 with a Lipschitz boundary ∂X . The unit outward normal n ( x ) exists a.e. on ∂X . Denote by � the 

unit sphere in R 

3 . The radiative transfer equation is given by 

ω · ∇ u + μt u = μs Su + f in X × �. (1.1) 

Here the unknown function u depends on a spatial variable x ∈ X and an angular variable ω ∈ �. ω ·∇u denotes the gener- 

alized directional derivative of u in the direction ω. For the spherical coordinate system, 

ω = ( sin θ cos ψ , sin θ sin ψ , cos θ ) T , 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2 π. 

μt = μa + μs , μa is the macroscopic absorption cross section, μs is the macroscopic scattering cross section, and f is a 

source function in X . The integral operator S is defined by 

Su ( x , ω ) = 

∫ 
�

k ( ω · ˆ ω ) u ( x , ˆ ω ) d σ ( ̂  ω ) 

with k a nonnegative normalized phase function: ∫ 
�

k ( ω · ˆ ω ) d σ ( ̂  ω ) = 1 ∀ ω ∈ �. 
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For the Henyey–Greenstein phase function [9] , 

k (t) = 

1 − g 2 

4 π( 1 + g 2 − 2 gt) 3 / 2 
, t ∈ [ −1 , 1] , 

where the parameter g ∈ (−1 , 1) is the anisotropy factor of the scattering medium. Note that g = 0 for isotropic scattering, 

g > 0 for forward scattering and g < 0 for backward scattering. 

Eq. (1.1) is supplemented by the boundary condition 

u = u in on �−, (1.2) 

where �− = { ( x , ω ) | x ∈ ∂X, ω ∈ �, ω · n ( x ) < 0 } is the incoming boundary. 

We make the following assumptions on the data 

μt , μs ∈ L ∞ (X ) , μs ≥ 0 , μt − μs ≥ c 0 > 0 a . e . in X, (1.3) 

f ∈ L 2 (X × �) , u in ∈ L 2 (�−) . (1.4) 

It is well-known [1] that the boundary value problems (1.1) and (1.2) has a unique solution in the space 

V := 

{
v ∈ L 2 (X × �) | ω ·∇ v ∈ L 2 (X × �) , v | �− ∈ L 2 (�−) 

}
, 

V 0 := { v ∈ V | v = 0 on �−} . 
In the following, we use ( · , · ) and ‖ · ‖ for the standard inner product and norm in the space L 2 ( X ×�). 

The RTE is a high-dimensional problem with five independent variables. It can be viewed as a hyperbolic-type integrod- 

ifferential equation involving both partial derivatives and integrals. Because of the high dimensionality and tight coupling 

between variables, it is challenging to develop effective numerical methods to solve the RTE. When the RTE is discretized 

using the discrete-ordinate method [2] , the integral term Su is approximated by a summation that involves all the numeri- 

cal integration points on the unit sphere. Consequently, for the resulting discrete system, each degree of freedom is coupled 

not only to degrees of freedom representing nearby nodes in space, but also to all other degrees of freedom representing 

the same spatial location with different angle. As a result the discrete system is relatively dense, and many of the methods 

for solving sparse systems from discretization of partial differential equations cannot be applied efficiently. Therefore, vari- 

ous approximation methods have been proposed for the RTE, including the simplified spherical harmonics method [6] , the 

delta-Eddington approximation [17] , the Fokker–Planck approximation [18,22] , the generalized Fokker–Planck approximation 

[19] , the Boltzmann–Fokker–Plank approximation [8,23] , the Fokker–Planck–Eddington approximation and the generalized 

Fokker–Planck–Eddington approximation [11] . 

In [4] , a family of differential approximations of the RTE, the so-called RT/DAEs is studied. The RT/DA equation is based on 

the approximation of the integral operator S by a sequence of linear combinations of the inverse of linear elliptic differential 

operators on the unit sphere. For a spherical harmonic of order n , Y n ( ω) (cf. [7] for an introduction), 

(SY n )( ω ) = k n Y n ( ω ) , 

where 

k n = 2 π

∫ 1 

−1 

k (s ) P n (s ) d s 

and P n is the Legendre polynomial of degree n . Therefore k n is an eigenvalue of S with spherical harmonics of order n as 

the corresponding eigenfunctions. It can be proved that k n ≥ 0 [5] , and moreover, since | P n | ≤ 1 in [ −1 , 1] , we have that 

k n ≤ 2 π

∫ 1 

−1 

k (s ) ds = 1 . 

For the Henyey–Greenstein phase function, we have 

k n = g n , n = 0 , 1 , . . . . 

Throughout this paper an RT/DA equation with j terms for the approximation of the integral operator will be called an 

RT/DA j equation. Consider a j -term RT/DAE: 

ω ·∇ u + μt u = μs S j u + f, (1.5) 

where 

S j = 

j ∑ 

i =1 

λ j,i (I − α j,i �
∗) −1 . 

The operator �∗ is the Laplace–Beltrami operator on the unit sphere. In sphereical coordinates it is defined as 

�∗u = 

1 

sin 

2 θ

∂ 2 u 

∂ψ 

2 
+ 

1 

sin θ

∂ 

∂θ

(
sin θ

∂u 

∂θ

)
. 
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