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We complete a well-balanced numerical method by introducing computing correctors to 

an earlier scheme for a model of two-phase flows. Each improvement based on a cor- 

rector to the scheme is designed to reduce the size of the errors across the interface of 

each node when using the solid contact to absorb the nonconservative terms. Three cor- 

rectors of two kinds are presented. One corrector of the first kind is designed to correct 

the states on both side of the solid contact at each node and the corresponding numerical 

flux before applying the iterative scheme. Two correctors of the second kind are designed 

to correct the state given by the iterative scheme depending on the sign of the velocity 

of the solid contact. These improvements are still well-balanced schemes. Tests show that 

the improvement by using the corrector of the first kind gives relatively better results, and 

the improvements by using one corrector of the second kind give much better results. In- 

terestingly, we find that improvements by using a corrector of second kind can resolve the 

accuracy problem of the existing scheme when its approximate solutions might converge 

to the solution slightly different from the exact solution. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

We are interested in numerical approximations for a model of two-phase flows, which is arisen from the modeling of 

the deflation-to-detonation transition in granular explosives, see [4,7] . Here, we simplify the model by assuming that the 

fluid in each phase is isentropic, and nonreactive. The governing equations form a nonconservative system of balance laws, 

see e.g. [12] for the mathematical formulation of nonconservative hyperbolic systems involving nonconservative terms. 

Recently, a one-parameter family of fast and well-balanced numerical schemes was presented in [28] . Schemes in this 

family are constructed by first using the solid contact of the model to absorb the nonconservative terms at each node, and 

second using underlying conservative schemes. The underlying schemes are formed by using convex combinations of numer- 

ical fluxes of the first-order Lax–Friedrichs scheme g LF and the second Richtmyer’s scheme g R . The CPU time of schemes in 

this family can be reduced when θ increases. In [28] , three values of the parameter θ are tested: 0 , 1 / (1 + C F L ) , C F L, where 

CFL is the stability number, and it is shown that the scheme corresponding to θ = CF L can give the best results. Although 

larger values of θ may work and may give better results, we choose θ = CF L for simplicity, which defines a scheme labeled 

by Fast 3. Since the values on both sides of the solid contact at each node are used to replace the approximate states on 

the whole cells, errors are expected. This motivates us to “minimize” or at least, to reduce the size of this kind of errors 
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by adding/subtracting a certain “residue”. This will be done by introducing three correctors to the Fast 3 scheme as follows. 

The first corrector is designed to correct the states on both side of the solid contact at each node and the corresponding 

numerical flux by adding/subtracting a certain “residue” caused by using these states to replace the approximate states for 

the whole cells before applying the underlying scheme. Two other correctors are designed to correct the approximate state 

produced by the Fast 3 scheme by adding/subtracting a certain “residue” directly to this state. This task, as seen later, will 

depend on the sign of the velocity of the solid contact. These improvements are still well-balanced schemes. Numerical tests 

are designed for different locations and the sign of the velocity of the solid contact in Riemann solutions (see [25] ): super- 

sonic/subsonic region and positive/negative velocity. These tests show that the improvement by the corrector of the first 

kind gives slightly better results, and the improvements by using one corrector of the second kind give much better results. 

Furthermore, as expected Fast 3 scheme might give approximate solutions converging to a solution which is slightly differ- 

ent from the exact solution. It is very interesting that the improvements by using a corrector of second kind can resolve 

this accuracy problem: it provides approximate solutions which converge to the exact solution, as the order of convergence 

is stable. Schemes of this type seem to be more suitable for certain users than the ones building on exact solutions, see for 

example [11] . Indeed, because of the resonance phenomenon, the structure of exact solutions of the Riemann problem for 

two-phase flow models is often very complicated, see [25] . 

There are many works in the literature on the numerical approximations of nonconservative systems. Well-balanced 

schemes for a single conservation law with a source term are studied in [3,5,6,16,17] . A robust entropy-satisfying finite vol- 

ume scheme for the isentropic Baer–Nunziato model was constructed in [9] . Relaxation schemes for two-phase flow models 

were presented in [1,20] . Godunov-type schemes for two-phase flow models were considered in [11,23,24] . A modeling of 

two-phase flows using a two-fluid and two-pressure assumption was presented in [14] . Other numerical schemes for various 

models of multi-phase flows were considered in [21,22,26,27,29] . Well-balanced schemes for other nonconservative hyper- 

bolic models were considered in [3,8,10,18] . Theoretical studies for various nonconservative hyperbolic models have been 

presented in [2,15,19,25] . See also the references therein. 

The organization of this paper is as follows. In Section 2 we present basic concepts and terminologies of the model. 

Section 3 is devoted to the construction of the correctors and the improvements of the well-balanced Fast 3 scheme. 

Section 4 provides us with numerical tests for different cases depending on the location and the sign of the velocity of 

the solid contact of the exact Riemann solution: the location of the solid contact in the supersonic/subsonic region with a 

positive/negative velocity. Finally, Section 5 is devoted to conclusions and discussions. 

2. Backgrounds 

2.1. Nonstrict hyperbolicity 

The governing equations of the model under consideration are given by 

∂ t (αg ρg ) + ∂ x (αg ρg u g ) = 0 , 

∂ t (αg ρg u g ) + ∂ x (αg (ρg u 

2 
g + p g )) = p g ∂ x αg , 

∂ t (αs ρs ) + ∂ x (αs ρs u s ) = 0 , 

∂ t (αs ρs u s ) + ∂ x (αs (ρs u 

2 
s + p s )) = −p g ∂ x αg , 

∂ t ρs + ∂ x (ρs u s ) = 0 , x ∈ R, t > 0 . 

(2.1) 

In (2.1) , the subscripts g and s indicate the quantities in the g -phase, which may be referred to as the gas phase, and in the 

solid phase, which may be referred to as the solid phase, though this work can cover other materials such as liquids. The no- 

tations αk , ρk , u k , p k , k = g, s, denote the volume fraction, density, velocity, and pressure in the k -phase, k = g, s, respectively. 

The volume fractions satisfy 

αs + αg = 1 . (2.2) 

The model (2.1) can be re-written as a nonconservative system 

U t + A (U) U x = 0 , (2.3) 

where 

U = 

⎛ 

⎜ ⎜ ⎝ 

ρg 

u g 

ρs 

u s 

αg 

⎞ 

⎟ ⎟ ⎠ 

, A (U) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

u g ρg 0 0 

ρg (u g − u s ) 

αg 

p ′ g (ρg ) 

ρg 
u g 0 0 0 

0 0 u s ρs 0 

0 0 

p ′ s (ρs ) 

ρs 
u s 

p g − p s 

αs ρs 

0 0 0 0 u s 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (2.4) 
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