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a b s t r a c t 

A k -labeling of a graph G is an injective function φ from E ( G ) to m + k real numbers, where 

m = | E(G ) | . Let μG (v ) = 

∑ 

u v ∈ E(G ) φ(u v ) . A graph is called antimagic if G admits a 0-labeling 

with labels in { 1 , 2 , . . . , | E(G ) |} such that μG (u ) � = μG (v ) for any pair u, v ∈ V (G ) . A well- 

known conjecture of Hartsfield and Ringel states that every connected graph other than 

K 2 admits an antimagic labeling. Recently, two sets of authors Arumugam, Premalatha, 

Ba ̆ca, Semani ̆cová-Fen ̆ov ̆cíková, and Bensmail, Senhaji, Lyngsie independently introduced 

the weaker notion of a local antimagic labeling, which only distinguishes adjacent vertices 

by sum with labels in { 1 , 2 , . . . , | E(G ) |} . Both sets of authors conjecture that any connected 

graph other than K 2 admits a local antimagic labeling. In this paper, we prove that every 

subcubic graph without isolated edges admits a local antimagic labeling with | E ( G )| pos- 

itive real labels. We also prove that each graph G without isolated edges admits a local 

antimagic k -labeling, where k = min { �(G ) + 1 , 3 col(G )+3 
2 

} , and col ( G ) is the coloring num- 

ber of G . Actually, the latter result holds for the list version. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

All graphs considered in this paper are finite and simple (loops and multiple edges are not allowed). We follow [6] for 

the terminology and notation not defined here. Let G be a graph. The least number s such that G has a vertex permutation 

in which each vertex is preceded by fewer than s of its neighbors is called the coloring number of G , denoted by col( G ). If a 

graph G has no isolated edges, then we call it nice . 

A k-labeling of a graph G is an injective function φ from E ( G ) to a label set S of m + k real numbers, where m = | E(G ) | . 
Let μG (v ) = 

∑ 

u v ∈ E(G ) φ(u v ) . A graph is called antimagic if G admits a 0-labeling with labels in S = { 1 , 2 , . . . , | E(G ) |} such 

that μG (u ) � = μG (v ) for any pair u, v ∈ V (G ) . In 1990, Hartsfield and Ringel proposed the following conjecture: 

Conjecture 1.1 [10] . (Antimagic graph conjecture) Every connected nice graph is antimagic. 

There have been significant progresses toward Conjecture 1.1 . Let G be a nice graph with n vertices. In 2004, Alon 

et al. [2] showed that there exist a constant c such that if G has minimum degree at least c · log n , then G is antimagic. 

They also proved that G is antimagic when the maximum degree of G is at least n − 2 . The latter result of Alon et al. was 
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improved by Yilma [18] in 2013. Besides the above results on dense graphs, Conjecture 1.1 has been also verified for regular 

graphs, see [4,7,8] . 

Notably, however, Conjecture 1.1 is still unsolved even for some particularly simple natural graph classes such as trees. 

Recently, two sets of authors Arumugam, Premalatha, Ba ̆ca, Semani ̆cová-Fen ̆ov ̆cíková [3] , and Bensmail, Senhaji, Lyngsie 

[5] independently introduced a weaker notion. A k -labeling is called local k-antimagic labeling if for every u v ∈ E(G ) , we 

have that μG (u ) � = μG (v ) . A graph G is called local antimagic if G has a local 0-antimagic labeling. 

Conjecture 1.2 [3,5] . Every nice connected graph G is local antimagic with the label set S = { 1 , 2 , . . . , | E(G ) |} . 
Arumugam et al. [3] were motivated by using the vertex sums to define a proper coloring of G . While Bensmail 

et al. [5] were motivated by the 1-2-3 Conjecture, which means that the edges of G are weighted by {1, 2, 3} such that 

μG (u ) � = μG (v ) for any u v ∈ E(G ) . The latest result about the 1-2-3 Conjecture is that weight set {1, 2, 3, 4, 5} suffices [13] . 

Conjecture 1.2 is true for nice trees [5] and nice paths, nice regular graphs, wheels, nice complete multipartite graphs [9] . 

Hu et al. proved that each degenerate graph admits a local antimagic orientation [12] . In [5] Bensmail et al. verified that 

subcubic graphs admits a local 6-antimagic labeling with S = { 1 , 2 , . . . , | E(G ) | + 6 } , every nice 2-degenerate graph admits 

a local 4-antimagic labeling with S = { 1 , 2 , . . . , | E(G ) | + 4 } , and every nice graph admits a local k -antimagic labeling with 

S = { 1 , 2 , . . . , k } , where k = min {| E(G ) | + 2�(G ) , 2 | E(G ) |} . 
Obviously, nice paths, nice cycles, complete graphs K n ( n ≥ 3) are local antimagic. In this paper, we improve the previous 

bounds in [5] and verify the following three theorems. 

Theorem 1.1. Assume that G is a nice connected subcubic graph, and S is a label set with | E ( G )| positive real numbers. Then G is 

local antimagic with labels in S. 

Theorem 1.2. Let G be a nice graph with maximum degree �( G ) . If all the vertices have odd degrees in G , then G is local 

(�(G ) + 1) -antimagic. Otherwise, G is local �( G ) -antimagic. 

Theorem 1.3. If G is a nice graph, then G is local ( 3 col(G )+3 
2 ) -antimagic. 

It is well known that every planar graph is a 5-degenerate graph. Thus the following corollary is obvious. 

Corollary 1.1. Let G be a nice planar graph, then G is local 11-antimagic. 

2. Preliminaries 

To prove our main results, we need to introduce some notations and several lemmas. 

The degree of a vertex v in a graph G is denoted by d G (v ) . A vertex v of degree l (at least l , at most l ) is called an l - vertex 

( l + - vertex , l −- vertex , respectively). Let N G (v ) be the set of all the neighbors of v in G . 

Let P (x 1 , x 2 , . . . , x n ) be a polynomial in n variables, where n ≥ 1. By c P (x 
k 1 
1 

x 
k 2 
2 

. . . x k n n ) , we denote the coefficient of the 

monomial x 
k 1 
1 

x 
k 2 
2 

. . . x k n n in P (x 1 , x 2 , . . . , x n ) , where k i (1 ≤ i ≤ n ) is a non-negative integer. 

Lemma 2.1 [1] . (Combinatorial Nullstellensatz) Let F be an arbitrary field, and let P = P (x 1 , ..., x n ) be a polynomial in 

F [ x 1 , ..., x n ] . Suppose the degree deg ( P ) of P equals 

n ∑ 

i =1 

k i , where each k i is a non-negative integer, and suppose the coefficient 

of x 
k 1 
1 

...x k n n in P is non-zero. If S 1 , .., S n are subsets of F with | S i | > k i , then there are s 1 ∈ S 1 , ..., s n ∈ S n so that P ( s 1 , ..., s n ) � = 0 . 

Lemma 2.2 [14] . Let B 1 , B 2 be the sets of integers, with | B 1 | = m ≥ 2 and | B 2 | = n ≥ 2 . Let B 3 = { x + y | x ∈ B 1 , y ∈ B 2 , x � = y } . 
Then | B 3 | ≥ m + n − 3 . Moreover, if B 1 � = B 2 , then | B 3 | ≥ m + n − 2 . Meanwhile, among the pairs in B 3 , there are at most two pairs 

satisfying x − y = z, where z is a constant. 

Lemma 2.3. Let S 1 , . . . , S λ be strictly increasing sequences of R with | S i | = m i , i.e. S i = { s 1 
i 
, s 2 

i 
, . . . , s 

m i 
i 

} and s 
j 
i 

< s k 
i 

for any 

1 ≤ j < k ≤ m i . Given some inequalities below: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

a 1 x 1 + a 12 x 2 + · · · + a 1 λx λ � = c 1 
a 21 x 1 + a 22 x 2 + · · · + a 2 λx λ � = c 2 

. . . 
a t1 x 1 + a t2 x 2 + · · · + a tλx λ � = c t , 

(1) 

where a ij , c i are some real numbers, and in each inequality there are exactly two non-zero a ij for 1 ≤ i ≤ t , 1 ≤ j ≤λ. Let r 1 
i 

be the 

number of inequalities, in which it holds that a ki � = 0 (1 ≤ k ≤ t ), and there exists some j with 1 ≤ j ≤ i − 1 , such that a kj � = 0, where 

1 ≤ k ≤ t. Let r 2 
i 

be the number of inequalities, in which it holds that a ki � = 0 (1 ≤ k ≤ t ), and there exists some j with i + 1 ≤ j ≤ λ, 

such that a kj � = 0, where 1 ≤ k ≤ t. Assume that r i = r 1 
i 

+ r 2 
i 

for 1 ≤ i ≤λ. Then we can find a set S = { (x 1 , . . . , x λ) | x i ∈ S i , i ∈ [ λ] } 
satisfying all the inequalities in (1) such that | S ′ | = 

∑ λ
i =1 (m i − r i ) − (λ − 1) , where S ′ = { ∑ λ

i =1 x i | (x 1 , . . . , x λ) ∈ S} . 



Download English Version:

https://daneshyari.com/en/article/8901268

Download Persian Version:

https://daneshyari.com/article/8901268

Daneshyari.com

https://daneshyari.com/en/article/8901268
https://daneshyari.com/article/8901268
https://daneshyari.com

