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ARTICLE INFO ABSTRACT
KEJ’V\{DTdSI This paper describes a disturbance rejection scheme that adopts equivalent-input-
Fractional-order system disturbance (EID) approach for uncertain fractional-order (FO) systems. An EID estimator

Disturbance rejection

3 - : that contains an FO observer is designed to actively compensate for the disturbances and
Equivalent-input-disturbance

Uncertain system process modeling uncertainties without requiring their prior knowledge. Under the con-

State observer struction of the FO control system, a robust stability condition and the parameters of the

Stability controller are derived using a linear matrix inequality based method. Finally, numerical
and practical examples are illustrated to demonstrate the validity and superiority of the
method.
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1. Introduction

Fractional-order (FO) calculus, as a pure mathematical theory, has been in use for approximately three centuries. How-
ever, it was not applied to control systems until FO derivatives and integrals provided a powerful instrument for describing
the hereditary properties of different systems. The control systems in the physical world are FO in nature. In the past
decades, FO control technique has been applied to solve several practical problems, such as motor control, signal process-
ing, and control of autonomous vehicles [1-5]. These FO models more accurately demonstrate the dynamic processes and
properties of actual systems than integer-order models do.

FO controllers always exhibit better control performance for fractional-order system (FOS) control than integer-order ones
[6]. Four main kinds of FO controllers exist, namely, CRONE, TID, and FO PID controllers and FO lead-lag compensators [6-8].
On the basis of stability theories of the FOS (e.g., [9-13]), researchers have recently developed several advanced techniques
for FOS control system design. By introducing an appropriate switching surface, the well-known sliding mode control has
been applied to uncertain and nonlinear FOSs [14,15]. Lan et al. presented a robust observer-based control method using
indirect Lyapunov approach [16,17]. Adaptive control has been successfully used for FOSs with non-commensurate orders by
designing an adaptive backstepping controller [18]. For model independence, easy parameter tuning, and strong robustness,
active disturbance rejection control (ADRC) provides an alternative for FOS control, such as those of nonlinear FOSs and FO
chaotic systems [19,20].
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The disturbance rejection problem needs to be addressed in the design of control systems. The disturbances in the FOS
are difficult to reject due to the complexity of FO differential equations [21,22]. The disturbance rejection problem for FOSs
has not been considered in most of the existing studies. In [23], ADRC was first used for the FOS, where the closed-loop
system is treated as a second-order system, FO is regarded as a part of the total disturbance, and an external state observer is
used to compensate for the disturbances. Given that the design does not focus on the FO itself, it would cause a major model
error and require a high observer bandwidth for accurate state estimation. Li et al. developed a fractional ADRC method
using the fractional external state observer, which estimates the total disturbance and the FO dynamic states [24]. However,
the uncertainties have not been mentioned. Periodic disturbance is considered on the basis of an adaptive orthogonal signal
generator, which permits the reconstruction of an unknown disturbance and the cancellation of its effect on the system
output [25].

This paper focuses on the disturbance rejection of an FOS with uncertainties. The equivalent-input-disturbance (EID) ap-
proach is effective for the disturbance rejection of integer-order uncertain systems [26,27]. Motivated by it, the uncertain FO
control system is designed applying the EID method. The configuration of the control system involves an FO state observer
and a low-pass filter. This method compensates for external disturbances and uncertainties of the FOS without the need for
any information about the disturbances. A robust stability condition of the control system and the design of the parameters
are derived using linear matrix inequality (LMI) technique. This stability condition is available for order 0 <« <2 and is less
conservative for 1 <« <2. Simulations demonstrate that the presented method effectively rejects disturbances and handles
uncertainties for an FOS.

2. Preliminaries

Throughout this paper, we denote by R" and R™ " an n-dimensional Euclidean space and the set of all m x n real matri-
ces, respectively. The notation A>0 (A <0) with A being a symmetric matrix means that the matrix A is positive (negative)
definite. ] and 0 mean the identity matrix of appropriate dimension and the null matrix of appropriate dimension. XT stands
for the transpose of X. We denote by sym(X) the expression XT + X. The notation |:>>§ §:| stands for ;(T ; .

In this paper, the Caputo fractional derivative definition is used. This is because the initial conditions for fractional differ-
ential equations with Caputo derivative take on the same form as those for integer-order ones. Referring to [7], the Caputo
fractional derivative of the function f{(t) with starting point t; = 0 is defined by

LA LIC)
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where I'(-) is the well-known Gamma function, I'(z) = f;° e~2tz~1dt, and m is an integer satisfying m—1 <o <m.
In this section, the following lemmas are introduced, which will be used in the control design of the FOS in the next
section.

Lemma 1. [28] Let A € R™" be a real matrix. Then the FOS (D¥x(t) = Ax(t), where 1<« <2, is asymptotically stable, that is
| arg(specA)| > amr /2, if and only if there exists a symmetric matrix P> 0 such that

(AP +PAT)sind (AP — PAT) cos6 0
% (AP + PAT)sing | =

where 0 = — /2.

Lemma 2. [29] For a given matrix TT € RP*" with rank(I1) = p, there exists a matrix X € RP*P such that T1X = XTI holds for
any X € R™™_if and only if X can be decomposed as

x=w|Xn O lyr
where W € R™" is an orthogonal matrix, X;; € RP*P, and X,, € R(-P)x(n=p),

Lemma 3. [30] Given matrices Y, D and E of appropriate dimensions. Y + DFE + ETFTDT < 0 holds for all F satisfying FFT <1, if
and only if there exists an & >0 such that Y + eDDT + ¢~ 1ETE < 0.

Lemma 4 (Schur complement). [31] For a given symmetric matrix
X X
Y= ,
|:2{2 222
the following statements are equivalent:

(1) £ <0;
(2) Zy1<0and Ty - ELE S < 0;
(3) T <0and Ty - %5, =L, <0.
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