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a b s t r a c t 

In this paper we revise the proofs of the results obtained in “Convergence radius of Os- 

ada’s method under Hölder continuous condition” [4], because the remainder of the Tay- 

lor’s expansion used for the obtainment of the local convergence radius is not correct. So 

we perform the complete study in order to modify the equation for getting the local con- 

vergence radius, the uniqueness radius and the error bounds. Moreover a dynamical study 

for the third order Osada’s method is also developed. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In the last years some of the studies concerning on iterative methods for approximating roots of nonlinear equations 

have focused on multiple roots. It is a special case where some particular aspects must be taken into account. Some real 

applications give this problem special interest, see [8] , with a study of the multipactor effect, analyzing the trajectory equa- 

tion of an electron in the air gap between two parallel plates results in a nonlinear equation with a multiple root. This also 

happens in the Van der Waals equation of state among other phenomenons. 

Especially interesting from a mathematical point of view is paper [1] where a complete local convergence study has 

been performed, obtaining the convergence radius of the well-known modified Newtons method for multiple zeros, when 

the involved function satisfies a Hölder or a center-Hölder continuity condition. This result is improved in [2] . Similar results 

for the third order method due to Halley are obtained in [3,9] . 

We are now interested in this kind of local convergence studies for third order methods for multiple roots. So we center 

our attention in papers [3] and [4] , where the authors analyze the local convergence for Osada and Halleys’s method under 

Hölder and center-Hölder continuity conditions. 

We consider the third order method of Osada [4] to find a multiple zero x ∗ of multiplicity m of a nonlinear equation 

f (x ) = 0 , f : D ⊆: R −→ : R , given by: 

x n +1 = x n − 1 

2 

m (m + 1) 
f (x n ) 

f ′ (x n ) 
+ 

1 

2 

(m − 1) 2 
f ′ (x n ) 

f ′′ (x n ) 
. (1) 

We say that r is the radius of the local convergence ball if the sequence x n generated by this iterative method, starting from 

any initial point in the open ball B ( x ∗, r ) converges to x ∗ and remains in the ball. In these studies it is interesting to obtain 
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the largest possible value of r , but obviously, this depends on the conditions that the nonlinear function verifies. Here we 

consider that f satisfies the following Hölder continuous conditions ∀ x , y ∈ D , 

| f (m ) (x ∗) −1 ( f (m +1) (x ) − f (m +1) (y )) | ≤ K 0 | x − y | p , K 0 > 0 , p ∈ ]0 , 1] . (2) 

| f (m ) (x ∗) −1 f (m +1) (x ) | ≤ K m 

, ∀ x ∈ D, K m 

> 0 . (3) 

Unfortunately, the Taylor’s expansion used by the authors of [4] in the proof of Lemma 1 is not correct. The same authors 

use the correct version of the remainder in Taylor’s expansion in the paper “On the convergence radius of the modified 

Newton method for multiple roots under the center-Hölder condition”, see Lemma 1 of [2] . 

In [4] , the authors consider the following formula for Taylor’s expansion with integral remainder: 

f (x ) = f (a ) + f ′ (a )(x − a ) + 

1 

2 

(x − a ) 2 f ′′ (a ) + 

1 

3! 
(x − a ) 3 f ′′′ (a ) + · · ·

+ 

1 

n ! 
(x − a ) n f (n ) (a ) + 

1 

n ! 

∫ x 

a 

( f (n +1) (t) − f (n +1) (a ))(x − t ) n dt . 

It is well know that for a Taylor expansion of order n , the derivative evaluated in the remainder is of order n + 1 , but if one 

uses the integral form remainder, this derivative is of order n . That is, the Taylor’s expansion with integral form remainder 

[7] has the form 

f (x ) = 

n ∑ 

k =0 

f (k ) (a ) 

k ! 
(x − a ) k + E n (x ) , 

where 

E n (x ) = 

1 

n ! 

∫ x 

a 

(x − t ) n f (n +1) (t ) dt . 

Another way to express the error is 

E n (x ) = 

1 

(n − 1)! 

∫ x 

a 

( f (n ) ( t) − f (n ) (a ))(x − t ) n −1 dt , 

where one can check the last equality by writing the last integral as 
∫ x 
α udv with u = f (n ) (t) − f n (α) and dv = (x − t ) n −1 dt . 

In order to correct the results obtained in paper [4] , we use different results involving divided differences that are intro- 

duced in the following section. 

2. Preliminaries 

We recall the definitions of divided differences and their properties. 

Definition 2.1 [5] The divided differences f [ a 0 , a 1 , . . . , a k ] , on k + 1 different points a 0 , a 1 , . . . , a k of a function f ( x ) are 

defined by 

f [ a 0 ] = f (a 0 ) , 

f [ a 0 , a 1 ] = 

f [ a 0 ] − f [ a 1 ] 

a 0 − a 1 
, 

. . . 

f [ a 0 , a 1 , . . . , a k ] = 

f [ a 0 , a 1 , . . . , a k −1 ] − f [ a 1 , a 2 , . . . , a k ] 

a 0 − a k 
. 

If the function f is sufficiently differentiable, then its divided differences f [ a 0 , a 1 , . . . , a k ] can be defined if some of the 

arguments a i coincide. For instance, if f ( x ) has k th derivative at a 0 , then it makes sense to define 

f 

⎡ ⎣ a 0 , a 0 , . . . , a 0 ︸ ︷︷ ︸ 
k +1 

⎤ ⎦ = 

f (k ) (a 0 ) 

k ! 
. (4) 

Lemma 1. [5] The divided differences f [ a 0 , a 1 , . . . , a k ] are symmetric functions of their arguments, i.e., they are invariant under 

permutations of [ a 0 , a 1 , . . . , a k ] . 

Lemma 2 ( [6] ) . If the function f has kth derivative, and f ( k ) ( x ) is continuous in the interval I x = 

[ min (x 0 , x 1 , . . . , x k ) , max (x 0 , x 1 , . . . , x k )] then 

f [ x 0 , x 1 , . . . , x k ] = 

∫ 1 

0 

. . . 

∫ 1 

0 

t k −1 
1 t k −2 

2 . . . t k −1 f 
(k ) (t) d t 1 . . . d t k , 
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