Contents lists available at [ScienceDirect](http://www.ScienceDirect.com)

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

The increase in the resolvent energy of a graph due to the addition of a new edge

Alexander Farrugia

Department of Mathematics, University of Malta Junior College, Msida, Malta

a r t i c l e i n f o

Keywords: Resolvent energy Resolvent energy matrix Characteristic polynomial

A B S T R A C T

The resolvent energy *ER*(*G*) of a graph *G* on *n* vertices whose adjacency matrix has eigenvalues $\lambda_1, \ldots, \lambda_n$ is the sum of the reciprocals of the numbers $n - \lambda_1, \ldots, n - \lambda_n$. We introduce the resolvent energy matrix **R**(*G*) and present an algorithm that produces this matrix. This algorithm may also be used to update **R**(*G*) when new edges are introduced to *G*. Using the resolvent energy matrix $R(G)$, we determine the increase in the resolvent energy *ER*(*G*) of *G* caused by such edge additions made to *G*. Moreover, we express this increase in terms of the characteristic polynomial of *G* and the characteristic polynomials of three vertex-deleted subgraphs of *G*.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let *G* be a simple graph on *n* vertices having vertex set $V(G) = \{1, 2, 3, ..., n\}$ and edge set $\mathcal{E}(G)$. Two vertices *u* and *v* are adjacent in *G* if and only if $\{u, v\} \in \mathcal{E}(G)$. If $\{u, v\} \notin \mathcal{E}(G)$, then the graph $G + uv$ is the graph with vertex set $\mathcal{V}(G)$ and edge set $\mathcal{E}(G) \cup \{\{u, v\}\}\$. If *H* has the same number of vertices as *G*, then *G* is a proper subgraph of *H* if $\mathcal{E}(G) \subset \mathcal{E}(H)$. The graph *G* − *u* denotes the one-vertex-deleted subgraph of *G* obtained from *G* after removing vertex *u* and the edges incident to *u*. The graph $G - u - v$ denotes the two-vertex-deleted subgraph $(G - u) - v$ of *G*.

Let **A** be the $n \times n$ adjacency matrix of *G*. The graph *G* has characteristic polynomial $\phi(G, x) = \det(xI - A)$, where **I** is the identity matrix. The roots of $\phi(G, x)$ are the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of **A**. The complete graph K_n on *n* vertices is the graph whose $n \times n$ adjacency matrix is **J** − **I**, where **J** is the matrix of all ones. On the other hand, the empty graph N_n on *n* vertices is the graph whose adjacency matrix is the $n \times n$ zero matrix.

A walk of length ℓ in *G* is a sequence of vertices v_0, v_1, \ldots, v_ℓ of *G* such that $\{v_i, v_{i+1}\} \in \mathcal{E}(G)$ for all $i \in \{0, 1, 2, \ldots, \ell - 1\}$. Such a walk is closed if $v_0 = v_\ell$. The *k*th spectral moment $M_k(G)$ of *G* is the sum of the *k*th powers of all of the eigenvalues of its adjacency matrix. Since tr(**M**), the trace of a matrix **M**, is equal to the sum of the eigenvalues of **M** [\[21\],](#page--1-0) $M_k(G) = \text{tr}(\mathbf{A}^k)$. Moreover, it is well known that the entry in the *j*th row and *k*th column of A^{ℓ} is equal to the number of walks of length ℓ in *G*, starting from $j \in V(G)$ and ending at $k \in V(G)$ [\[7\].](#page--1-0) Thus, $M_k(G)$ may be thought of as being the total number of closed walks of length *k* in *G*, starting and ending at any vertex.

In 1978, Ivan Gutman, motivated by research on the total π-electron energy of molecules, defined the *graph energy* [\[15\]](#page--1-0) as $\sum_{i=1}^n |\lambda_i|$. Starting from 2006, a surprisingly high number of graph energy variants were proposed in the literature, each with their own applications. This 'energy deluge' is discussed in reference [\[16\],](#page--1-0) which additionally surveys and compares several of these graph energy variants. For a more thorough discussion of many such alternative graph energies, the reader

<https://doi.org/10.1016/j.amc.2017.10.020> 0096-3003/© 2017 Elsevier Inc. All rights reserved.

E-mail address: alex.farrugia@um.edu.mt

is referred to the books $[20,22]$. Moreover, in a recent paper $[24]$, new upper bounds were produced for several of these graph energies.

One of the more recent of these graph energy variants, the *resolvent energy*, was introduced in [\[19\],](#page--1-0) following the earlier works by Estrada and Higham [\[12\],](#page--1-0) and Chen and Qian [\[5\].](#page--1-0) It is defined by

$$
ER(G)=\sum_{i=1}^n\frac{1}{n-\lambda_i}.
$$

Eventually, the resolvent energy was extensively studied [\[1,9,14,17,18\].](#page--1-0) Also, its Laplacian spectrum version was recently put forward [\[3,25\].](#page--1-0)

In [19, [Theorem](#page--1-0) 2], it was shown that

$$
ER(G)=\sum_{k=0}^{\infty}\frac{M_k(G)}{n^{k+1}}.
$$

Thus, the resolvent energy belongs to a general class of cumulative vertex centrality measures based on closed walks, originally put forward by Estrada and Higham in [\[12\].](#page--1-0) This class contains graph invariants of the form

$$
\mathbb{E}(G) = \sum_{k=0}^{\infty} c_k M_k(G) \tag{1}
$$

with the sequence of positive real numbers c_0, c_1, c_2, \ldots chosen such that the Maclaurin series $\sum_{k=0}^{\infty} c_k x^k$ converges to some function $f(x)$. Since $M_k(G) = \text{tr}(\mathbf{A}^k)$, we have the relation

 $\mathbb{E}(G) = \text{tr}(f(\mathbf{A})).$

For instance, when $-n < x < n$, the series $\sum_{k=0}^{\infty} n^{-k-1}x^k$ converges to $(n-x)^{-1}$. Since the eigenvalues of **A** also satisfy this inequality for any graph *G* (see, for example, [\[26\]\)](#page--1-0), the summation $\sum_{k=0}^{\infty} n^{-k-1} \mathbf{A}^k$ converges to $(n\mathbf{I} - \mathbf{A})^{-1}$. Note that the eigenvalues of $(nI - A)^{-1}$ are $\frac{1}{n-\lambda_1}, \ldots, \frac{1}{n-\lambda_n}$, all of which are positive real numbers; hence, this inverse matrix exists for all

graphs and is positive-definite. The resolvent energy *ER*(*G*) is thus $\mathbb{E}(G)$ with $c_k = \frac{1}{n^{k+1}}$ for all *k* and with $f(x) = \frac{1}{n-x}$. The following lemma is consequently inferred.

Lemma 1.1. $ER(G) = \text{tr}((nI - A)^{-1}).$

Two other particular cases of graph invariants pertaining to the class E(*G*) of the form (1) are the *Estrada index* [\[4,8,10,11,13\],](#page--1-0) in which

$$
c_k = \frac{1}{k!}
$$
 for all $k, f(x) = e^x, \mathbb{E}(G) = EE(G) = \text{tr}(e^A)$

and the *resolvent Estrada index* [\[2,5,12\]](#page--1-0) (defined for graphs that are not complete) in which

$$
c_k = \frac{1}{(n-1)^k} \text{ for all } k, \ f(x) = \frac{n-1}{n-1-x},
$$

$$
\mathbb{E}(G) = EE_r(G) = (n-1)\text{ tr}(((n-1)\mathbf{I} - \mathbf{A})^{-1}).
$$

Clearly, there is a relation between the resolvent Estrada index *EEr*(*G*) and the resolvent energy *ER*(*G*). Indeed, they are both based on the *resolvent* matrix of **A**, defined by $(zI - A)^{-1}$, where *z* is a complex variable [\[28\].](#page--1-0) The resolvent matrix of **A** exists for values of *z* that are not eigenvalues of **A**.

It is clear, by Lemma 1.1, that studying the matrix (*n***I** − **A**)[−]¹ should elucidate research on the resolvent energy. Because of this, we first establish strict bounds for the entries of the matrix (*n***I** − **A**)[−]¹ in Section 2. Subsequently, we consider how this matrix changes after introducing a new edge to a graph *G*, leading to the algorithm in [Section](#page--1-0) 4 that evaluates the resolvent energy of any graph without the need of evaluating any matrix inverse or any eigenvalues. In [Section](#page--1-0) 5, the resolvent energy change δ caused by the introduction of a new edge in *G* is quantified using entries of (*n***I** − **A**)[−]1. After deriving expressions for the entries of this matrix in terms of four characteristic polynomials related to *G*, we present a formula in [Section](#page--1-0) 7 that evaluates δ from these characteristic polynomials.

2. The resolvent energy matrix

Motivated by the previous introductory section, we start this section by making the following definition.

Definition 2.1. The *resolvent energy matrix* of a graph *G* on *n* vertices having adjacency matrix **A** is the matrix **R**(*G*) = $(nI - A)^{-1}$.

We denote the resolvent energy matrix **R**(*G*) of Definition 2.1 by **R** if the graph *G* is clear from the context. Note that **R** has rational entries, since it is the inverse of a matrix with integer entries. Because of this, $ER(G) = \text{tr}(\mathbf{R}(G))$ is a rational Download English Version:

<https://daneshyari.com/en/article/8901298>

Download Persian Version:

<https://daneshyari.com/article/8901298>

[Daneshyari.com](https://daneshyari.com)