Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

The increase in the resolvent energy of a graph due to the addition of a new edge

Alexander Farrugia

Department of Mathematics, University of Malta Junior College, Msida, Malta

ARTICLE INFO

Keywords: Resolvent energy Resolvent energy matrix Characteristic polynomial

ABSTRACT

The resolvent energy ER(G) of a graph G on n vertices whose adjacency matrix has eigenvalues $\lambda_1, \ldots, \lambda_n$ is the sum of the reciprocals of the numbers $n - \lambda_1, \ldots, n - \lambda_n$. We introduce the resolvent energy matrix $\mathbf{R}(G)$ and present an algorithm that produces this matrix. This algorithm may also be used to update $\mathbf{R}(G)$ when new edges are introduced to G. Using the resolvent energy matrix $\mathbf{R}(G)$, we determine the increase in the resolvent energy ER(G) of G caused by such edge additions made to G. Moreover, we express this increase in terms of the characteristic polynomial of G and the characteristic polynomials of three vertex-deleted subgraphs of G.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let *G* be a simple graph on *n* vertices having vertex set $\mathcal{V}(G) = \{1, 2, 3, ..., n\}$ and edge set $\mathcal{E}(G)$. Two vertices *u* and *v* are adjacent in *G* if and only if $\{u, v\} \in \mathcal{E}(G)$. If $\{u, v\} \notin \mathcal{E}(G)$, then the graph G + uv is the graph with vertex set $\mathcal{V}(G)$ and edge set $\mathcal{E}(G) \cup \{\{u, v\}\}$. If *H* has the same number of vertices as *G*, then *G* is a proper subgraph of *H* if $\mathcal{E}(G) \subset \mathcal{E}(H)$. The graph G - u denotes the one-vertex-deleted subgraph of *G* obtained from *G* after removing vertex *u* and the edges incident to *u*. The graph G - u - v denotes the two-vertex-deleted subgraph (G - u) - v of *G*.

Let **A** be the $n \times n$ adjacency matrix of *G*. The graph *G* has characteristic polynomial $\phi(G, x) = \det(x\mathbf{I} - \mathbf{A})$, where **I** is the identity matrix. The roots of $\phi(G, x)$ are the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of **A**. The complete graph K_n on *n* vertices is the graph whose $n \times n$ adjacency matrix is $\mathbf{J} - \mathbf{I}$, where **J** is the matrix of all ones. On the other hand, the empty graph N_n on *n* vertices is the graph whose adjacency matrix is the $n \times n$ zero matrix.

A walk of length ℓ in *G* is a sequence of vertices v_0, v_1, \ldots, v_ℓ of *G* such that $\{v_i, v_{i+1}\} \in \mathcal{E}(G)$ for all $i \in \{0, 1, 2, \ldots, \ell - 1\}$. Such a walk is closed if $v_0 = v_\ell$. The *k*th spectral moment $M_k(G)$ of *G* is the sum of the *k*th powers of all of the eigenvalues of its adjacency matrix. Since tr(**M**), the trace of a matrix **M**, is equal to the sum of the eigenvalues of **M** [21], $M_k(G) = \text{tr}(\mathbf{A}^k)$. Moreover, it is well known that the entry in the *j*th row and *k*th column of \mathbf{A}^ℓ is equal to the number of walks of length ℓ in *G*, starting from $j \in \mathcal{V}(G)$ and ending at $k \in \mathcal{V}(G)$ [7]. Thus, $M_k(G)$ may be thought of as being the total number of closed walks of length *k* in *G*, starting and ending at any vertex.

In 1978, Ivan Gutman, motivated by research on the total π -electron energy of molecules, defined the graph energy [15] as $\sum_{i=1}^{n} |\lambda_i|$. Starting from 2006, a surprisingly high number of graph energy variants were proposed in the literature, each with their own applications. This 'energy deluge' is discussed in reference [16], which additionally surveys and compares several of these graph energy variants. For a more thorough discussion of many such alternative graph energies, the reader

https://doi.org/10.1016/j.amc.2017.10.020 0096-3003/© 2017 Elsevier Inc. All rights reserved.

E-mail address: alex.farrugia@um.edu.mt

is referred to the books [20,22]. Moreover, in a recent paper [24], new upper bounds were produced for several of these graph energies.

One of the more recent of these graph energy variants, the *resolvent energy*, was introduced in [19], following the earlier works by Estrada and Higham [12], and Chen and Qian [5]. It is defined by

$$ER(G) = \sum_{i=1}^{n} \frac{1}{n - \lambda_i}.$$

Eventually, the resolvent energy was extensively studied [1,9,14,17,18]. Also, its Laplacian spectrum version was recently put forward [3,25].

In [19, Theorem 2], it was shown that

$$ER(G) = \sum_{k=0}^{\infty} \frac{M_k(G)}{n^{k+1}}.$$

Thus, the resolvent energy belongs to a general class of cumulative vertex centrality measures based on closed walks, originally put forward by Estrada and Higham in [12]. This class contains graph invariants of the form

$$\mathbb{E}(G) = \sum_{k=0}^{\infty} c_k M_k(G) \tag{1}$$

with the sequence of positive real numbers $c_0, c_1, c_2, ...$ chosen such that the Maclaurin series $\sum_{k=0}^{\infty} c_k x^k$ converges to some function f(x). Since $M_k(G) = tr(\mathbf{A}^k)$, we have the relation

 $\mathbb{E}(G) = \mathrm{tr}(f(\mathbf{A})).$

For instance, when -n < x < n, the series $\sum_{k=0}^{\infty} n^{-k-1}x^k$ converges to $(n-x)^{-1}$. Since the eigenvalues of **A** also satisfy this inequality for any graph *G* (see, for example, [26]), the summation $\sum_{k=0}^{\infty} n^{-k-1} \mathbf{A}^k$ converges to $(n\mathbf{I} - \mathbf{A})^{-1}$. Note that the eigenvalues of $(n\mathbf{I} - \mathbf{A})^{-1}$ are $\frac{1}{n-\lambda_1}, \dots, \frac{1}{n-\lambda_n}$, all of which are positive real numbers; hence, this inverse matrix exists for all

graphs and is positive-definite. The resolvent energy ER(G) is thus $\mathbb{E}(G)$ with $c_k = \frac{1}{n^{k+1}}$ for all k and with $f(x) = \frac{1}{n-x}$. The following lemma is consequently inferred.

Lemma 1.1. $ER(G) = tr((nI - A)^{-1}).$

Two other particular cases of graph invariants pertaining to the class $\mathbb{E}(G)$ of the form (1) are the *Estrada index* [4,8,10,11,13], in which

$$c_k = \frac{1}{k!}$$
 for all $k, f(x) = e^x, \mathbb{E}(G) = EE(G) = tr(e^A)$

and the resolvent Estrada index [2,5,12] (defined for graphs that are not complete) in which

$$c_k = \frac{1}{(n-1)^k} \text{ for all } k, \ f(x) = \frac{n-1}{n-1-x},$$
$$\mathbb{E}(G) = EE_r(G) = (n-1) \operatorname{tr} \left(((n-1)\mathbf{I} - \mathbf{A})^{-1} \right)$$

Clearly, there is a relation between the resolvent Estrada index $EE_r(G)$ and the resolvent energy ER(G). Indeed, they are both based on the *resolvent matrix* of **A**, defined by $(z\mathbf{I} - \mathbf{A})^{-1}$, where *z* is a complex variable [28]. The resolvent matrix of **A** exists for values of *z* that are not eigenvalues of **A**.

It is clear, by Lemma 1.1, that studying the matrix $(n\mathbf{I} - \mathbf{A})^{-1}$ should elucidate research on the resolvent energy. Because of this, we first establish strict bounds for the entries of the matrix $(n\mathbf{I} - \mathbf{A})^{-1}$ in Section 2. Subsequently, we consider how this matrix changes after introducing a new edge to a graph *G*, leading to the algorithm in Section 4 that evaluates the resolvent energy of any graph without the need of evaluating any matrix inverse or any eigenvalues. In Section 5, the resolvent energy change δ caused by the introduction of a new edge in *G* is quantified using entries of $(n\mathbf{I} - \mathbf{A})^{-1}$. After deriving expressions for the entries of this matrix in terms of four characteristic polynomials related to *G*, we present a formula in Section 7 that evaluates δ from these characteristic polynomials.

2. The resolvent energy matrix

Motivated by the previous introductory section, we start this section by making the following definition.

Definition 2.1. The resolvent energy matrix of a graph G on n vertices having adjacency matrix **A** is the matrix $\mathbf{R}(G) = (n\mathbf{I} - \mathbf{A})^{-1}$.

We denote the resolvent energy matrix $\mathbf{R}(G)$ of Definition 2.1 by \mathbf{R} if the graph G is clear from the context. Note that \mathbf{R} has rational entries, since it is the inverse of a matrix with integer entries. Because of this, $ER(G) = tr(\mathbf{R}(G))$ is a rational

Download English Version:

https://daneshyari.com/en/article/8901298

Download Persian Version:

https://daneshyari.com/article/8901298

Daneshyari.com