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The current manuscript focuses on solving systems of multi-pantograph equations. The 

spectral tau method is applied for solving systems of multi-pantograph equations with 

shifted Jacobi polynomials as basis functions. The convergence analysis of the proposed 

technique is also investigated. We introduced the numerical solutions of some test prob- 

lems and compared the obtained numerical solutions of such problems with those given 

using different numerical methods. 
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1. Introduction 

As an important kind of delay differential equations, the pantograph equation has been used in modeling many real-life 

phenomena, such as economy, biology, astrophysics, control and electrodynamics, see [1–3] . Various numerical approaches 

were utilized for pantograph equations; Bota and Cãruntu [4] applied the ε-Approximate polynomial method for solving 

multi-pantograph equations with variable coefficients, Akkaya et al. [5] applied a numerical approach based on the First 

Boubaker polynomials for solving pantograph delay differential equations, Doha et al. [6] applied the Jacobi rational-Gauss 

collocation method for solving generalized pantograph equations, Ahmed and Mukhtar [7] applied a stochastic approach 

for solving multi-pantograph equations, Cheng et al. [8] applied the reproducing kernel method for neutral functional- 

differential equation, Reutskiy [9] used the spectral collocation method for approximating the solution of pantograph func- 

tional differential equations, Akyuz-Dascioglu and Sezer [10] applied the Bernoulli collocation method for solving high-order 

generalized pantograph equations and Javadi et al. [11] introduced a numerical method based on Bernstein polynomials to 

solve generalized pantograph equations. 

As a spectral approach for solving numerically some kinds of differential equations, the tau method is classified as one 

of the most important used methods due to its high convergence and accuracy. Saadatmandi and Dehghan [12] used the 

tau method for the one-dimensional parabolic inverse problem, while the authors in [13,14] applied the tau approximation 

for solving the weakly singular Volterra integral equation. Soltanalizadeh et al. [15] introduced a new method based on the 

tau approximation for the Sobolev-type differential equation with nonlocal boundary conditions. In [16] , the authors used 

the Legendre wavelets as basis of the spectral tau approximation to solve integral equations, while Pishbin [17] applied an 

operational tau technique for solving systems of integro-differential equations. Recently, Shao et al. [18] used the Chebyshev 

polynomials as basis of the tau approach with the domain decomposition method for solving singular perturbed problems. 

The spectral tau approach is applied based on shifted Jacobi polynomials for solving various kinds of fractional differential 

equations, see [19–22] . 
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In Koroma et al. [23] , the decomposition approach is used with the Laplace transform method to solve the system of 

multi-pantograph equations, while Sedaghat et al. [24] introduced a different numerical technique based on Chebyshev 

polynomials with operational matrix method for getting its numerical solution. Also, Yüzbasi [25] used the first kind of 

Bessel functions, the spectral collocation technique and the operational matrix method for the system of multi-pantograph 

equations. 

Here, we intend to develop a numerical technique for solving the system of multi-pantograph equations: 

l ∑ 

s =1 

a p,s u 

(1) 
s (t) = 

l ∑ 

s =1 

b p,s u s (t) + 

m ∑ 

r=1 

l ∑ 

s =1 

c r p,s u s (q r t) + g p (t) , 1 ≤ p ≤ l, 0 ≤ t ≤ T , (1.1) 

subject to 

u p (0) = d p , p = 1 , 2 , . . . , l, (1.2) 

where a p,s , b p,s , c r p,s , q r , d p (1 ≤ p, s ≤ l) , 0 < q r < T (r = 1 , 2 , . . . , m ) are real numbers with a p , p � = 0, u s ( t ) (1 ≤ s ≤ l ) are the 

unknown functions we have to find, and g p ( t ) (1 ≤ p ≤ l ) are known functions defined in [0, T ]. For achieving our main goal, 

we utilize the shifted Jacobi polynomials as basis of the spectral tau approach to convert the system of multi-pantograph 

equations (1.1) and (1.2) into a system of algebraic equations. 

Our manuscript is outlined as follows: In the following section, we present some relevant properties of shifted Jacobi 

polynomials, while in Section 3 , we develop a numerical method for solving the system of multi-pantograph equations 

(1.1) and (1.2) based on the spectral tau approach. The convergence analysis of the proposed numerical approach is presented 

in Section 4 . In Section 5 , we test the proposed approach on two numerical examples. Conclusions are given in Section 6 . 

2. Shifted Jacobi polynomials 

Assuming that the Jacobi polynomial of degree i is denoted by P 
(γ ,δ) 
i 

(x ) ; γ ≥ −1 , δ ≥ −1 (defined on the interval 

(−1 , 1) ). Then P 
(γ ,δ) 
i 

(x ) may be generated by the recurrence formula: 

P 
(γ ,δ) 
i +1 

(x ) = (φi x − ϕ i ) P 
(γ ,δ) 
i 

(x ) − ψ i P 
(γ ,δ) 
i −1 

(x ) , i ≥ 1 , 

with 

P 
(γ ,δ) 
0 

(x ) = 1 , P 
(γ ,δ) 
1 

(x ) = 

1 

2 

(γ + δ + 2) x + 

1 

2 

(γ − δ) , 

where 

φi = 

(2 i + γ + δ + 1)(2 i + γ + δ + 2) 

2(i + 1)(i + γ + δ + 1) 
, 

ϕ i = 

(2 i + γ + δ + 1)(δ2 − γ 2 ) 

2(i + 1)(i + γ + δ + 1)(2 i + γ + δ) 
, 

ψ i = 

(2 i + γ + δ + 2)(i + γ )(i + δ) 

(i + 1)(i + γ + δ + 1)(2 i + γ + δ) 
. 

Introducing the change of variable x = 

2 t 
T − 1 , then we get the shifted Jacobi polynomials (P 

(γ ,δ) 
T,i 

(t)) defined on the 

interval (0, T ) that may be generated by: 

P 
(γ ,δ) 
T,i +1 

(t) = (θi t − ϑ i ) P 
(γ ,δ) 
T,i 

(t) − ψ i P 
(γ ,δ) 
T,i −1 

(t) , i ≥ 1 , 

with 

P 
(γ ,δ) 
T, 0 

(t) = 1 , P 
(γ ,δ) 
T, 1 

(t) = 

1 

T 
(γ + δ + 2) t − (δ + 1) , 

where 

θi = 

(2 i + γ + δ + 1)(2 i + γ + δ + 2) 

T (i + 1)(i + γ + δ + 1) 
, 

ϑ i = 

(2 i + γ + δ + 1)(2 i 2 + (1 + δ)(γ + δ) + 2 i (γ + δ + 1)) 

(i + 1)(i + γ + δ + 1)(2 i + γ + δ) 
. 

These polynomials are satisfying the orthogonality relation [26] ∫ T 

0 

P 
(γ ,δ) 
T,i 

(t) P 
(γ ,δ) 
T, j 

(t ) w 

(γ ,δ) 
T 

(t ) dt = h 

(γ ,δ) 
T, j 

, (2.1) 
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