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a b s t r a c t 

In this paper, we study a triangular spectral-element method based on a one-to-one map- 

ping between the rectangle and the triangle. We construct a new approximation space 

where the integral singularity brought by the mapping can be removed in a naive and 

stable way. We build aquasi-interpolation triangular spectral-element approximation, and 

analyze its approximation error. Based on this quasi-interpolation spectral-element approx- 

imation, we put forward a new triangular spectral-element method for the elliptic prob- 

lems. We present the approximation scheme, analyze the convergence, and do some ex- 

periments to test the effectiveness. At last, we implement this triangular spectral-element 

method to solve the steady Stokes problem. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The spectral method, with its high accuracy, is becoming an attractive method nowadays. But the property of the basis 

function restricts its further application to problems on the general domain. The spectral-element method (SEM), which 

combines the high accuracy of the spectral method with the geometric flexibility of the finite element, greatly pushes the 

classical spectral method forward and has become a popular method for simulations of fluid dynamics, atmospheric model- 

ing and many other challenging problems [2,3,5,6,13,15,20,23] . In order to extend the spectral-element method to problems 

on the general domain, Guo and Jia [7] study the spectral method on the convex quadrilateral; Jia and Guo [12] extend 

this method to the quadrilateral spectral-element method (QSEM) on the polygon; Guo and Jia [8] study the pseudospectral 

method on the quadrilateral. In some cases, the triangular element can approximate the complex boundary better and has 

more flexibility, which makes the spectral method on triangle become another research hotspot [9–11,13,16,19,24–26] . Gen- 

erally speaking, according to the class of functions used in the approximations, the triangular spectral (element) method has 

three categories: (i) nodal basis methods based on high-order polynomial interpolation on special interpolation points, such 

as Fekete points; (ii) modal basis methods based on the Koornwinder–Dubiner(KD) polynomials; and (iii) approximations by 

non-polynomial functions on a triangle. Taylor and co-authors [17,28,29] study the high accuracy integral formula on some 
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special nodes on a triangle. Karniadakis and Sherwin [13] use the Duffy transformation to generate warped tensorial orthog- 

onal polynomials on triangles, and Li and Shen [16] analyze its optimal error estimate. Shan and Li [22] furthermore extend 

the polynomial spectral method on a single triangle to the triangular spectral-element method (TSEM) for the eigenvalue 

problems of Stokes equation. In [11,24] , the Duffy transformation is also used to generate rational basis functions rather 

than polynomials. Chen et al. [4] apply the method in [24] to the Navier–Stokes problem. It is known that the Duffy trans- 

formation is not one-to-one. It collapses one edge of the reference square into a vertex of the triangle, so the computational 

grids severely gather near the singular vertex. Moreover, the integral singularity brought by the Duffy transformation in 

computation of the stiffness matrix using the nodal basis seems hard to handle. To break through these drawbacks, the pa- 

per [19] puts forward a new one-to-one transformation between the square and the triangle, which pulls one edge (at the 

middle point) of the triangle to two edges of the square. Based on this transformation, Samson et al. [21] study a triangu- 

lar spectral method using the modal basis, where a recursive method is proposed to handle the singularity. The theoretical 

analysis and numerical tests therein show the efficiency of the method, but it seems not convenient to extend the method to 

TSEM. In the presented paper, also based on the one-to-one transformation in [19] , we study a new nodal basis TSEM. This 

TSEM enjoys the following advantages: firstly, the grid distribution is more uniform than that produced by the commonly- 

used Duffy transformation; secondly, almost fully enjoying the tensorial product property of the nodal basis makes this 

TSEM convenient to handle the nonlinear or variable coefficient problems; thirdly, the integral singularity brought by the 

one-to-one mapping can be removed in a naive and stable way; at last, the codes of this TSEM can be obtained through 

slight revision of the codes commonly used in standard nodal basis QSEM. 

In Section 2 , we present the one-to-one transformation used in the presented TSEM. In Section 3 , we introduce the ap- 

proximation space and study a quasi-interpolation operator. In Section 4 , we put forward a new triangular spectral-element 

method for the modal elliptic problem; we present the approximation scheme, the analysis of convergence and do three 

tests. In Section 5 , we implement this TSEM to the steady Stokes problem. We make a conclusion in the last section. 

2. Preliminaries 

In this section, we present the related properties of the one-to-one transformation F � 

used in this TSEM. After that we 

have a look at the integral singularity. 

2.1. One-to-one transformation between square and triangle 

Let ( ξ , η) be the coordinate system on the reference square � := �ξ × �η = (−1 , 1) 2 = �2 , and ( x , y ) be the coordinate 

system related to the triangle � := � Q 1 Q 2 Q 3 with vertex coordinates x 1 , x 2 and x 3 . Throughout this paper, we use boldface 

letters to denote vectors or vector-valued functions, e.g., 

x = (x, y ) ; x j = (x j , y j ) , 1 ≤ j ≤ 3 ; a j = (a j , b j ) , 1 ≤ j ≤ 4 . (2.1) 

Then the one-to-one mapping from the reference square to the triangle, F � 

: �→ � , is given by 

x = x 1 
(1 + ξ )(3 − η) 

8 

+ x 2 
(1 − ξ )(1 − η) 

4 

+ x 3 
(3 − ξ )(1 + η) 

8 

= a 1 + a 2 ξ + a 3 η + a 4 ξη, (ξ , η) ∈ �̄. (2.2) 

Easy to see, the transformation (2.2) maps the midpoint of the edge Q 1 Q 3 to the vertex (1,1) of �. By the direct calculation, 

we have 

a 1 = (3 x 1 + 2 x 2 + 3 x 3 ) / 8 , a 2 = (3 x 1 − 2 x 2 − x 3 ) / 8 , 

a 3 = (−x 1 − 2 x 2 + 3 x 3 ) / 8 , a 4 = (−x 1 + 2 x 2 − x 3 ) / 8 . (2.3) 

The Jacobian matrix and the Jacobian determinant of the transformation (2.2) are 

J � = 

[
∂ ξ x 

∂ ηx 

]
= 

[
a 2 + a 4 η

a 3 + a 4 ξ

]
, J � = det (J � ) = 

S 

8 

(2 − ξ − η) , (2.4) 

where S = 

1 
2 

∣∣∣∣ 1 1 1 
x 3 x 2 x 1 
y 3 y 2 y 1 

∣∣∣∣ > 0 is the area of the triangle � . 

We now provide an insight about the transformation F � 

and its Jacobian determinant J � 

from another perspective. Recall 

that the usual transformation F Q (cf. [1,3,13,27,30] ) between � and the convex quadrilateral Q is 

x = x 1 
(1 + ξ )(1 − η) 

4 

+ x 2 
(1 − ξ )(1 − η) 

4 

+ x 3 
(1 − ξ )(1 + η) 

4 

+ x 4 
(1 + ξ )(1 + η) 

4 

, (ξ , η) ∈ �̄, (2.5) 

where x i , i = 1 , 2 , 3 , 4 are coordinates of the four vertices Q i , i = 1 , 2 , 3 , 4 of the quadrilateral Q . In fact, the transformation 

(2.2) is a special form of the transformation (2.5) when Q 4 coincides with the midpoint of Q 1 Q 3 . To demonstrate this, assume 

that Q 4 locates on Q 1 Q 3 and 

x 4 = (1 − λ) x 3 + λx 1 , λ ∈ [0 , 1] . (2.6) 
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