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In this work, an efficient computational method is proposed for solving the linear multi- 

point boundary value problems (MBVPs). Our approach depends mainly on of the least 

squares approximation method, the Lagrange-multiplier method and the residual error 

function technique. With the proposed scheme, we handle the numerical solutions of the 

linear MBVPs in a straightforward manner. Firstly, the given linear MBVP is reduced to a 

linear system of algebraic equations, and the coefficients of the approximate polynomial 

solution of the problem are determined by solving this system. Secondly, a linear bound- 

ary value problem related to the error function of the approximate solution is constructed, 

and error estimation is presented for the suggested method. The convergence of the ap- 

proximate solution is proved. The reliability and efficiency of the proposed approach are 

demonstrated by some numerical examples. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Multi-point boundary value problems are closely related to various practical problems in different areas of science and 

engineering, such as the vibrations of a guy wire of uniform cross section [1] , the theory of elastic stability [2] , the large 

bridges design problem [3,4] , and so on. In the past twenty years, the problem of existence and uniqueness of the solutions 

for the MBVPs has been extensively investigated; see [5–13] and the references therein. Meanwhile, quite a few methods 

have been proposed to handle the numerical solutions of the MBVPs, such as the shooting method [4,14] , the finite differ- 

ence method [15] , the Adomian decomposition method [16] , the variational iteration method [17] , the homotopy analysis 

method [18] , the Sinc-collocation method [19] , the optimal homotopy asymptotic method [20] , the shifted Jacobi spectral 

method [21] , the reproducing kernel method and its modifications [22–31] , and the Pade approximant [32] . More recently, 

an effective algorithm based mainly on differential transform method was proposed to solve the general n order MBVPs 

[33] . 

The squared reminder minimization method (SRMM) was introduced by Bota and C ̌aruntu [34] for solving the multi- 

pantograph equation, and this method was developed in [35–39] for the numerical solutions of various kinds of nonlinear 

differential and integral equations. In [40] , the authors proposed a similar approach named as the best square approximation 

method (BSAM) to solve a mixed linear Volterra–Fredholm integral equation. Recently, Wang et al. used the least squares 

approximation method (LSAM), which can be considered as a developed version of the SRMM and the BSAM, for solving 
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the Volterra–Fredholm integral equations [41] . In [42] , the authors applied the LASM to handle the numerical solutions of 

Hammerstein–Volterra delay integral equations. 

The motivation of this study is to combine the LASM, the Lagrange-multiplier method and the residual error function 

technique, to obtain the approximate solution of the following linear differential equation 

L [ u (x )] = u 

(n ) (x ) + 

n −1 ∑ 

i =0 

p i (x ) u 

(i ) (x ) = f (x ) , 0 ≤ x ≤ 1 , (1) 

subject to the boundary conditions 

n ∑ 

j=1 

n −1 ∑ 

k =0 

αm 

jk u 

(k ) (ξ j ) = βm 

, m = 1 , 2 , . . . , n, (2) 

where 0 ≤ ξ 1 < ξ 2 < ��� < ξ n ≤ 1, αm 

jk 
and βm 

are real constants. We assume that f has the properties which guarantee the 

existence and uniqueness of the solution of the problem (1) under the conditions (2) . The basic ideas of the previous works 

[34–42] are developed and applied to the problems (1) and (2) . 

The residual error function technique in our proposed approach is used to handle error estimation of the numerical 

solutions. The residual error function was first introduced by Oliveira [43] and this technique was successfully used by 

several researchers to measure the absolute errors of numerical solutions of various kinds of function equations [44–50] . 

The rest of the paper is organized as follows. Section 2 is devoted to the explanation of the proposed method for solving 

the problems (1) and (2) . Convergence analysis and an error estimation are presented in Section 3 . Section 4 shows some 

numerical examples to testify the validity and applicability of the proposed method. In Section 5 , we end this paper with a 

brief conclusion. 

2. Method of solution 

Firstly, we define the operator 

(D u )(x ) = u 

(n ) (x ) + 

n −1 ∑ 

i =0 

p i (x ) u 

(i ) (x ) − f (x ) . (3) 

Suppose that φ0 (x ) , φ1 (x ) , . . . , φN (x ) are linearly independent functions on the close interval [0, 1], and �N = 

span { φ0 (x ) , φ1 (x ) , . . . , φN (x ) } is generated by the linear space. Therefore, for any u N ( x ) ∈ �N , there exist c 0 , c 1 , . . . , c N such 

that 

u N (x ) = 

N ∑ 

l=0 

c l φl (x ) . (4) 

Here, we want to find the approximate solution u N ( x ) defined in (4) of the problems (1) and (2) . The solution u N ( x ) need 

to satisfy the following conditions: 

| (D u N )(x ) | < ε (5) 

and 

n ∑ 

j=1 

n −1 ∑ 

k =0 

αm 

jk u 

(k ) 
N 

(ξ j ) = βm 

, m = 1 , 2 , . . . , n. (6) 

In order to determine the coefficients c 0 , c 1 , . . . , c N of the approximate solution u N ( x ), we substitute (4) into (3) such 

that 

(D u N )(x ) = 

N ∑ 

l=0 

c l φ
(n ) 
l 

(x ) + 

n −1 ∑ 

i =0 

p i (x ) 

(
N ∑ 

l=0 

c l φ
(i ) 
l 

(x ) 

)
− f (x ) 

= 

N ∑ 

l=0 

c l 

(
φ(n ) 

l 
(x ) + 

n −1 ∑ 

i =0 

p i (x ) φ(i ) 
l 

(x ) 

)
− f (x ) 

= 

N ∑ 

l=0 

c l αl (x ) − f (x ) , (7) 

where αl (x ) = φ(n ) 
l 

(x ) + 

∑ n −1 

i =0 
p i (x ) φ(i ) 

l 
(x ) , l = 0 , 1 , . . . , N. 

In the following, we introduce a real function: 

J = J(c 0 , c 1 , . . . , c N ) = 

∫ 1 

0 

(D u N ) 
2 (x )d x. (8) 
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