Strong edge chromatic index of the generalized Petersen graphs

Zixuan Yang, Baoyindureng Wu*
College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China

A R T I C L E I N F O

MSC:

05C15,

Keywords:

Strong edge coloring
Strong chromatic index
Generalized Petersen graphs

Abstract

A strong edge coloring of a graph G is an assignment of colors to the edges of G such that two distinct edges are colored differently if they are adjacent to a common edge or share an endpoint. The strong chromatic index of a graph G, denoted by $\chi_{s}^{\prime}(G)$, is the minimum number of colors needed for a strong edge coloring of G. We determine the strong chromatic index of the generalized Petersen graphs $P(n, k)$ when $1 \leq k \leq 3$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let $G=(V, E)$ be a finite simple graph with vertex set V and edge set $E,|V|$ and $|E|$ are its order and size, respectively. The girth of G is the length of the shortest cycle in G. The maximum degree of G is denoted by $\Delta(G)$ and simply by Δ. A strong k-edge coloring of a graph G is a mapping $\phi: E \mapsto\{1, \ldots, k\}$ such that any two edges are colored differently if they are adjacent to a common edge or share an endpoint. In other words, the edges in each color class form an induced matching in G. The strong chromatic index of a graph G, denoted $\chi_{s}^{\prime}(G)$, is the minimum number of colors needed for a strong edge coloring of G.

The notion of strong edge chromatic index was first introduced by Fouquet and Jolivet [10,11]. The strong edge coloring problem is NP-complete even for bipartite graphs at least 4 [19]. However, polynomial time algorithms have been obtained for chordal graphs [5], co-comparability graphs [13], and partial k-trees [21].

In 1998, Erdős [8] asked whether it is true that $\chi_{s}^{\prime}(G) \leq \frac{5}{4} \Delta^{2}$. Faudree et al. [9] revised the above question as follows:
Conjecture 1. (Faudree et al. [10]).

$$
\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2} & \text { if } \Delta \text { is even }, \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4} & \text { if } \Delta \text { is odd },\end{cases}
$$

It is clear that Conjecture 1 holds when $\Delta \leq 2$. In regard to subcubic graphs, i.e., graphs with maximum degree at most 3 , Faudree et al. [10] posed the following set of conjectures.
Conjecture 2. (Faudree et al. [10]). Let G be a subcubic graph.
$2.1 \chi_{S}^{\prime}(G) \leq 10$.
2.2 If G is bipartite, then $\chi_{s}^{\prime}(G) \leq 9$.

[^0]2.3 If G is planar, then $\chi_{s}^{\prime}(G) \leq 9$.
2.4 If G is bipartite and the degree sum along every edge is at most 5 , then $\chi_{s}^{\prime}(G) \leq 6$.
2.5 If G is bipartite with girth at least 6 , then $\chi_{s}^{\prime}(G) \leq 7$.
2.6 If G is bipartite with large girth, then $\chi_{s}^{\prime}(G) \leq 5$.

Conjecture 2.1 was proved to be true for $\Delta=3$ by Andersen [2] and, independently, by Hork et al. [14]. Conjecture 2.2 was verified by Steger and Yu [23]. Conjecture 2.4 was confirmed by Wu and Lin [26] and was generalized by Nakprasit and Nakprasit [20]. Borodin and Ivanova [4] verified Conjecture 2.6 for planar graphs.

Shiu and Tam [22] determined the strong chromatic index of the complete cubic Halin graph. Lih and Liu [17] proved that a cubic Halin graph G is different from two particular graphs then $\chi_{s}^{\prime}(G) \leq 7$. Lai et al. [15] proved that a Halin graph $G=T \cup C$ is different from a certain necklace $N e_{2}$ and any wheel $W_{n}(n \not \equiv 0 \bmod 3)$ then $\chi_{s}^{\prime}(G) \leq \chi_{s}^{\prime}(T)+3$.

Throughout the paper, all subscripts are taken modulo n. Given integers $n \geq 3$ and $1 \leq k<\frac{n}{2}$, the generalized Petersen graph $P(n, k)$ has $2 n$ vertices labeled $v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}$. The vertices labeled $v_{1}, v_{2}, \ldots, v_{n}$ are called outer vertices while those labeled $u_{1}, u_{2}, \ldots, u_{n}$ are inner vertices. There are three types of edges in $P(n, k)$: (a) outer edges, connecting outer vertices in the form $v_{i} v_{i+1}$ for each $i \in\{1,2,3, \ldots, n\}$; (b) inner edges, connecting inner vertices in the form $u_{i} u_{i+k}$, for each $i \in\{1,2,3, \ldots, n\}$; and (c) spokes, or edges connecting an outer vertex with an inner one, in the form $v_{i} u_{i}$ for $i=1,2,3, \ldots, n$. These graphs were introduced by Coxeter [6] and named by Watkins [24] based on the fact that $P(5,2)$ is the Petersen graph. For two positive integers n and $k,(n, k)$ denotes the greatest common divisor. Various properties of the generalized Petersen graphs are extensively studied, see for some recent results [1,3,7,12,16,18,25,27,28].

Motivated from Conjectures 2.5 and 2.6 , in this paper, we consider the strong chromatic number of the generalized Petersen graphs. First we consider when a generalized Petersen graph is bipartite.

Theorem 1.1. For two integers n and k with $n>2 k$ and $k \geq 1, P(n, k)$ is bipartite if and only if $\frac{n}{(n, k)}$ is even and k is odd.
Proof. It is well known that a graph is bipartite if and only if it contains no odd cycle. We show its necessity based on this criterion. Assume that $P(n, k)$ is bipartite. Observe that there is a cycle of length $k+3$ in $P(n, k)$, for instance $v_{1}, v_{2}, \ldots, v_{k+1}, u_{k+1}, u_{1}, v_{1}$, implying that k is odd. Moreover, there is a cycle of length $\frac{n}{(n, k)}$ in $P(n, k)$, for instance $u_{1}, u_{k+1}, \ldots, u_{l k+1}, u_{1}$, where $l=\frac{n}{(n, k)}-1$ implying that $\frac{n}{(n, k)}$ is even.

Next we show its sufficiency by giving a proper 2 -vertex-coloring of $P(n, k)$. Since $\frac{n}{(n, k)}$ is even, n is even. Let $c: V(P(n$, $k)) \mapsto\{1,2\}$ be defined as follows: $c\left(v_{i}\right)=1$ if i is odd, $c\left(v_{i}\right)=2$ otherwise; $c\left(u_{i}\right)=1$ if i is even, $c\left(u_{i}\right)=2$ otherwise. We claim that c is proper. By the definition of c, it remains to show that for any edge $e=u_{i} u_{j}, c\left(u_{i}\right) \neq c\left(u_{j}\right)$. Without loss of generality, let $j=i+k$. Since k is odd, i and j have different parity. By the definition of c, we have $c\left(u_{i}\right) \neq c\left(u_{j}\right)$. So, c is proper, implying that G is bipartite.

In this paper, we determine the strong chromatic index of generalized Petersen graphs $P(n, k)$ when $1 \leq k \leq 3$. For convenience, a k-edge coloring c of $G=(V, E)$ is given in the form of a partition $\left\{E_{1}, E_{2}, \ldots, E_{k}\right\}$ of E, where E_{i} denotes the (possibly empty) of set of edges of assigned color i.

2. $\chi_{s}^{\prime}(P(n, 1))$

Note that $P(n, 1) \cong C_{n} \square K_{2}$, the cartesian product of the cycle C_{n} of order n and K_{2}.
Theorem 2.1. For an integer $n \geq 3$,

$$
\chi_{s}^{\prime}(P(n, 1))= \begin{cases}9, & \text { if } n=3 \\ 8, & \text { if } 5 \leq n \leq 6 \\ 6, & \text { if } n \text { is divisible by } 4 \\ 7, & \text { otherwise }\end{cases}
$$

Proof. It is straightforward to check that $\chi_{s}^{\prime}(P(3,1))=9$ and $\chi_{s}^{\prime}(P(n, 1))=8$ for $n \in\{5,6\}$ (see a strong edge coloring of $P(n, 1)$ as shown in Fig. 2.1 using $\chi_{s}^{\prime}(P(n, 1))$ colors $)$.

Assume that n is divisible by 4 . Since $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{2} u_{2}, v_{3} u_{3}, u_{2} u_{3}$ must be assigned distinct colors, $\chi_{s}^{\prime}(P(n, 1)) \geq 6$. On the other hand, we can find a strong 6 -edge coloring (see Fig. 2.2) of $P(n, 1)$ with

$$
\begin{aligned}
& E_{1}=\left\{v_{1+4 i} v_{2+4 i}, u_{3+4 i} u_{4+4 i}: 0 \leq i \leq \frac{n-4}{4}\right\} \\
& E_{2}=\left\{v_{2+4 i} v_{3+4 i}, u_{4+4 i} u_{5+4 i}: 0 \leq i \leq \frac{n-4}{4}\right\} \\
& E_{3}=\left\{v_{3+4 i} v_{4+4 i}, u_{1+4 i} u_{2+4 i}: 0 \leq i \leq \frac{n-4}{4}\right\}, \\
& E_{4}=\left\{v_{2 i} u_{2 i}: 1 \leq i \leq \frac{n}{2}\right\},
\end{aligned}
$$

https://daneshyari.com/en/article/8901341

Download Persian Version:

https://daneshyari.com/article/8901341

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: baoyin@xju.edu.cn (B. Wu).

