Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Strong edge chromatic index of the generalized Petersen graphs

Zixuan Yang, Baoyindureng Wu*

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China

ARTICLE INFO

ABSTRACT

A strong edge coloring of a graph *G* is an assignment of colors to the edges of *G* such that two distinct edges are colored differently if they are adjacent to a common edge or share an endpoint. The strong chromatic index of a graph *G*, denoted by $\chi'_{S}(G)$, is the minimum number of colors needed for a strong edge coloring of *G*. We determine the strong chromatic index of the generalized Petersen graphs P(n, k) when $1 \le k \le 3$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Strong edge coloring

Strong chromatic index Generalized Petersen graphs

MSC:

05C15,

Keywords:

All graphs considered in this paper are finite and simple. Let G = (V, E) be a finite simple graph with vertex set V and edge set E, |V| and |E| are its *order* and *size*, respectively. The girth of G is the length of the shortest cycle in G. The maximum degree of G is denoted by $\Delta(G)$ and simply by Δ . A *strong k*-edge coloring of a graph G is a mapping $\phi : E \mapsto \{1, \ldots, k\}$ such that any two edges are colored differently if they are adjacent to a common edge or share an endpoint. In other words, the edges in each color class form an induced matching in G. The *strong* chromatic index of a graph G, denoted $\chi'_{S}(G)$, is the minimum number of colors needed for a strong edge coloring of G.

The notion of strong edge chromatic index was first introduced by Fouquet and Jolivet [10,11]. The strong edge coloring problem is NP-complete even for bipartite graphs at least 4 [19]. However, polynomial time algorithms have been obtained for chordal graphs [5], co-comparability graphs [13], and partial *k*-trees [21].

In 1998, Erdős [8] asked whether it is true that $\chi'_s(G) \leq \frac{5}{4}\Delta^2$. Faudree et al. [9] revised the above question as follows:

Conjecture 1. (Faudree et al. [10]).

$$\chi'_{s}(G) \leq \begin{cases} \frac{5}{4}\Delta^{2} & \text{if } \Delta \text{ is even,} \\ \frac{5}{4}\Delta^{2} - \frac{1}{2}\Delta + \frac{1}{4} & \text{if } \Delta \text{ is odd,} \end{cases}$$

It is clear that Conjecture 1 holds when $\Delta \leq 2$. In regard to subcubic graphs, i.e., graphs with maximum degree at most 3, Faudree et al. [10] posed the following set of conjectures.

Conjecture 2. (Faudree et al. [10]). Let G be a subcubic graph.

2.1 $\chi'_{s}(G) \leq 10$. **2.2** If G is bipartite, then $\chi'_{s}(G) \leq 9$.

https://doi.org/10.1016/j.amc.2017.10.047 0096-3003/© 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author. E-mail address: baoyin@xju.edu.cn (B. Wu).

2.3 If G is planar, then $\chi'_{s}(G) \leq 9$.

2.4 If G is bipartite and the degree sum along every edge is at most 5, then $\chi'_{s}(G) \leq 6$.

2.5 If G is bipartite with girth at least 6, then $\chi'_{s}(G) \leq 7$.

2.6 If G is bipartite with large girth, then $\chi'_{s}(G) \leq 5$.

Conjecture 2.1 was proved to be true for $\Delta = 3$ by Andersen [2] and, independently, by Hork et al. [14]. Conjecture 2.2 was verified by Steger and Yu [23]. Conjecture 2.4 was confirmed by Wu and Lin [26] and was generalized by Nakprasit and Nakprasit [20]. Borodin and Ivanova [4] verified Conjecture 2.6 for planar graphs.

Shiu and Tam [22] determined the strong chromatic index of the complete cubic Halin graph. Lih and Liu [17] proved that a cubic Halin graph *G* is different from two particular graphs then $\chi'_s(G) \le 7$. Lai et al. [15] proved that a Halin graph $G = T \cup C$ is different from a certain necklace Ne_2 and any wheel W_n ($n \ne 0 \mod 3$) then $\chi'_s(G) \le \chi'_s(T) + 3$.

Throughout the paper, all subscripts are taken modulo *n*. Given integers $n \ge 3$ and $1 \le k < \frac{n}{2}$, the generalized Petersen graph P(n, k) has 2*n* vertices labeled $v_1, v_2, ..., v_n, u_1, u_2, ..., u_n$. The vertices labeled $v_1, v_2, ..., v_n$ are called outer vertices while those labeled $u_1, u_2, ..., u_n$ are inner vertices. There are three types of edges in P(n, k): (a) outer edges, connecting outer vertices in the form v_iv_{i+1} for each $i \in \{1, 2, 3, ..., n\}$; (b) inner edges, connecting inner vertices in the form u_iu_{i+k} , for each $i \in \{1, 2, 3, ..., n\}$; and (c) spokes, or edges connecting an outer vertex with an inner one, in the form v_iu_i for i = 1, 2, 3, ..., n. These graphs were introduced by Coxeter [6] and named by Watkins [24] based on the fact that P(5, 2) is the Petersen graph. For two positive integers *n* and *k*, (*n*, *k*) denotes the greatest common divisor. Various properties of the generalized Petersen graphs are extensively studied, see for some recent results [1,3,7,12,16,18,25,27,28].

Motivated from Conjectures 2.5 and 2.6, in this paper, we consider the strong chromatic number of the generalized Petersen graphs. First we consider when a generalized Petersen graph is bipartite.

Theorem 1.1. For two integers n and k with n > 2k and $k \ge 1$, P(n, k) is bipartite if and only if $\frac{n}{(n,k)}$ is even and k is odd.

Proof. It is well known that a graph is bipartite if and only if it contains no odd cycle. We show its necessity based on this criterion. Assume that P(n, k) is bipartite. Observe that there is a cycle of length k + 3 in P(n, k), for instance $v_1, v_2, \ldots, v_{k+1}, u_{k+1}, u_1, v_1$, implying that k is odd. Moreover, there is a cycle of length $\frac{n}{(n,k)}$ in P(n, k), for instance $u_1, u_{k+1}, \ldots, u_{lk+1}, u_1$, where $l = \frac{n}{(n,k)} - 1$ implying that $\frac{n}{(n,k)}$ is even.

Next we show its sufficiency by giving a proper 2-vertex-coloring of P(n, k). Since $\frac{n}{(n,k)}$ is even, n is even. Let c: $V(P(n, k)) \mapsto \{1, 2\}$ be defined as follows: $c(v_i) = 1$ if i is odd, $c(v_i) = 2$ otherwise; $c(u_i) = 1$ if i is even, $c(u_i) = 2$ otherwise. We claim that c is proper. By the definition of c, it remains to show that for any edge $e = u_i u_j$, $c(u_i) \neq c(u_j)$. Without loss of generality, let j = i + k. Since k is odd, i and j have different parity. By the definition of c, we have $c(u_i) \neq c(u_j)$. So, c is proper, implying that G is bipartite. \Box

In this paper, we determine the strong chromatic index of generalized Petersen graphs P(n, k) when $1 \le k \le 3$. For convenience, a *k*-edge coloring *c* of G = (V, E) is given in the form of a partition $\{E_1, E_2, \ldots, E_k\}$ of *E*, where E_i denotes the (possibly empty) of set of edges of assigned color *i*.

2. $\chi'_{s}(P(n, 1))$

Note that $P(n, 1) \cong C_n \Box K_2$, the cartesian product of the cycle C_n of order n and K_2 .

Theorem 2.1. For an integer $n \ge 3$,

$$\chi'_{s}(P(n,1)) = \begin{cases} 9, & \text{if } n = 3, \\ 8, & \text{if } 5 \le n \le 6, \\ 6, & \text{if } n \text{ is divisible by } 4, \\ 7, & \text{otherwise.} \end{cases}$$

Proof. It is straightforward to check that $\chi'_s(P(3, 1)) = 9$ and $\chi'_s(P(n, 1)) = 8$ for $n \in \{5, 6\}$ (see a strong edge coloring of P(n, 1) as shown in Fig. 2.1 using $\chi'_s(P(n, 1))$ colors). \Box

Assume that *n* is divisible by 4. Since v_1v_2 , v_2v_3 , v_3v_4 , v_2u_2 , v_3u_3 , u_2u_3 must be assigned distinct colors, $\chi'_s(P(n, 1)) \ge 6$. On the other hand, we can find a strong 6-edge coloring (see Fig. 2.2) of P(n, 1) with

$$\begin{split} E_1 &= \left\{ \nu_{1+4i}\nu_{2+4i}, u_{3+4i}u_{4+4i} : 0 \le i \le \frac{n-4}{4} \right\}, \\ E_2 &= \left\{ \nu_{2+4i}\nu_{3+4i}, u_{4+4i}u_{5+4i} : 0 \le i \le \frac{n-4}{4} \right\}, \\ E_3 &= \left\{ \nu_{3+4i}\nu_{4+4i}, u_{1+4i}u_{2+4i} : 0 \le i \le \frac{n-4}{4} \right\}, \\ E_4 &= \left\{ \nu_{2i}u_{2i} : 1 \le i \le \frac{n}{2} \right\}, \end{split}$$

Download English Version:

https://daneshyari.com/en/article/8901341

Download Persian Version:

https://daneshyari.com/article/8901341

Daneshyari.com