Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Traceability on 2-connected line graphs

Tao Tian^a, Liming Xiong^{b,*}

^a School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 102488, PR China ^b School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 102488, PR China

ARTICLE INFO

Keywords: Traceable Line graph Spanning trail Dominating trail

ABSTRACT

In this paper, we mainly prove the following: Let *G* be a connected almost bridgeless simple graph of order *n* sufficiently large such that $\overline{\sigma}_2(G) = \min\{d(u) + d(v) : uv \in E(G)\} \ge 2(\lfloor n/11 \rfloor - 1)$. Then either *L*(*G*) is traceable or Catlin's reduction of the core of *G* is one of eight graphs of order 10 or 11, where the core of *G* is obtained from *G* by deleting the vertices of degree 1 of *G* and replacing each path of length 2 whose internal vertex has degree 2 in *G* by an edge. We also give a new proof for the similar theorem in Niu et al. (2012) which has flaws in their proof.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For graph-theoretic notation not explained in this paper, we refer the reader to [2]. We consider only finite and loopless graphs in this paper. A graph is called *multigraph* if it contains multiple edges. A graph without multiple edges is called a *simple graph* or simply a graph. A graph *G* is *traceable* if it has a Hamilton path, i.e., a spanning path. For a vertex *x* of *G*, $N_G(x)$ is the neighborhood of *x* in *G*, and $d_G(x)$ is the degree of *x* in *G*. For a vertex set $S \subseteq V(G)$, $N_G(S) = \bigcup_{x \in S} N_G(x)$. By $\delta(G)$ and $\Delta(G)$ we denote the minimum degree and the maximum degree of *G*, respectively. A graph is *claw-free* if it has no induced subgraph isomorphic to $K_{1,3}$. Similarly, a graph is *triangle-free* if it has no K_3 . Define $D_i(G) = \{v \in V(G) \mid d_G(v) = i\}$, $D(G) = D_1(G) \cup D_2(G)$ and $D_{\geq 3}(G) = \bigcup_{i \geq 3} D_i(G)$. An edge $e = uv \in E(G)$ is called a *pendant edge* of *G* if min $\{d(u), d(v)\} = 1$. The *girth* of *G*, denoted by *g*, is the length of a shortest cycle of *G*. The line graph of a graph *G* denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in *G* have at least one vertex in common. For a graph *G*, we define $\overline{\sigma}_2(G) = \min\{d(u) + d(v) : uv \in E(G)\}$ and $\sigma_2(G) = \min\{d(u) + d(v) : uv \notin E(G)\}$.

In [1,7], Harris et al. concerned how small the order of a claw-free, 2-connected nontraceable graph is. They presented two smallest claw-free, 2-connected nontraceable graphs, both of which have order 18 and size 24, and proved the following result.

Theorem 1. (Harris and Mossinghoff [7] and Bullock et al. [1]) Let G be a 2-connected, claw-free graph with |V(G)| < 18, then G is traceable.

A graph G is *almost bridgeless* if every cut edge of G is incident with a vertex of degree 1. For almost bridgeless graphs, in [13], Xiong and Zong proved the following result.

Theorem 2. (Xiong and Zong [13]) Let G be a connected almost bridgeless simple graph of order n such that

 $\overline{\sigma}_2(G) > 2(\lfloor n/10 \rfloor - 1).$

https://doi.org/10.1016/j.amc.2017.10.043 0096-3003/© 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: taotian0118@163.com (T. Tian), lmxiong@bit.edu.cn (L. Xiong).

Fig. 1. Two graphs of order 10 that have no spanning trail.

If n is sufficiently large, then L(G) is traceable.

Let *G* be a connected multigraph. For $X \subseteq E(G)$, the *contraction* G/X is the graph obtained from *G* by identifying the two ends of each edge $e \in X$ and deleting the resulting loops. Even when *G* is simple, G/X may not be simple. If Γ is a connected subgraph of *G*, then we write G/Γ for $G/E(\Gamma)$ and use v_{Γ} for the vertex in G/Γ to which Γ is contracted, and v_{Γ} is called a *contracted vertex* if $\Gamma \neq K_1$.

Let O(G) be the set of vertices of odd degree in *G*. A graph *G* is *collapsible* if for every even subset $R \subseteq V(G)$, there is a spanning connected subgraph Γ_R of *G* with $O(\Gamma_R) = R$. K_1 is regarded as a collapsible graph.

In [3], Catlin showed that every multigraph *G* has a unique collection of maximal collapsible subgraphs $\Gamma_1, \Gamma_2, ..., \Gamma_c$. The *reduction* of *G* is $G' = G/(\bigcup_{i=1}^c \Gamma_i)$, the graph obtained from *G* by contracting each Γ_i into a single vertex v_i $(1 \le i \le c)$. For a vertex $v \in V(G')$, there is a unique maximal collapsible subgraph $\Gamma_0(v)$ such that v is the contraction image of $\Gamma_0(v)$ and $\Gamma_0(v)$ is the *preimage* of v and v is a contracted vertex if $\Gamma_0(v) \ne K_1$. A graph *G* is *reduced* if G' = G.

For a graph *G*, in [9], Niu et al. considered the traceability of L(G) about $\overline{\sigma}_2(G)$ and $\sigma_2(G)$, respectively. They proved the following results, where F_1 , F_2 are depicted in Fig. 1.

(1.1)

(1.2)

Theorem 3. (Niu et al. [9]) Let G be a connected almost bridgeless simple graph of order n such that

$$\overline{\sigma}_2(G) \geq 2(\lfloor n/10 \rfloor - 1).$$

If n is sufficiently large, then either L(G) is traceable or the reduction of G equals F_1 or F_2 .

Theorem 4. (Niu et al. [9]) Let G be a 2-edge-connected simple graph with girth g = 3 or 4. If $\sigma_2(G) \ge \frac{2}{g-2}(\frac{n}{10} + g - 4)$ and n is sufficiently large, then either L(G) is traceable or the reduction of G equals F_1 or F_2 .

An edge cut *X* of *G* is *essential* if G - X has at least two non-trivial components. For an integer k > 0, a graph *G* is *essentially k-edge-connected* if *G* does not have an essential edge-cut *X* with |X| < k. Note that a graph *G* is essentially *k*-edge-connected if and only if L(G) is *k*-connected or complete.

Let *G* be an essentially 2-edge-connected graph with $\overline{\sigma}_2(G) \ge 5$. Then $D(G) = D_1(G) \cup D_2(G)$ is an independent set. Let E_1 be the set of pendant edges in *G*. For each $x \in D_2(G)$, there are two edges e_x^1 and e_x^2 incident with x. Let $X_2(G) = \{e_x^1 | x \in D_2(G)\}$. Define

$$G_0 = G/(E_1 \cup X_2(G)).$$

In other words, G_0 is obtained from *G* by deleting the vertices in $D_1(G)$ and replacing each path of length 2 whose internal vertex is a vertex in $D_2(G)$ by an edge. Note that G_0 may not be simple.

A vertex set $V(G_0)$ is regarded as a subset of V(G). A vertex in G_0 is nontrivial if it is obtained by contracting some edges in $E_1 \cup X_2(G)$ or it is adjacent to a vertex in $D_2(G)$ in G. Since $\overline{\sigma}_2(G) \ge 5$, all vertex in $D_2(G_0)$ are nontrivial. Let X = D(G). In [12], G_0 is denoted by $I_X(G)$. Following [10], we call G_0 the core of G.

Let G'_0 be the reduction of G_0 . For a vertex $v \in V(G'_0)$. Let $\Gamma_0(v)$ be the maximum collapsible preimage of v in G_0 and let $\Gamma(v)$ be the preimage of v in G. Note that $\Gamma(v)$ is the graph induced by edges composing of $E(\Gamma_0(v))$ and some edges in $E_1 \cup X_2(G)$. A vertex v in G'_0 is a *nontrivial vertex* if v is a contracted vertex (i.e., $|V(\Gamma(v))| > 1$) or v is adjacent to a vertex in $D_2(G)$.

In this paper, we improve Theorems 3 and 4 and get the following results. Where the graphs G_1, G_2, \ldots, G_6 are depicted in Fig. 2.

Theorem 5. Let G be a connected almost bridgeless simple graph of order n such that

$$\overline{\sigma}_2(G) \geq 2(|n/11| - 1).$$

If n is sufficiently large, then either L(G) is traceable or $G'_0 \in \{F_1, F_2, G_1, G_2, \dots, G_6\}$, where G'_0 is the reduction of G_0 , G_0 is the core of G. Particularly, if $G'_0 \in \{G_1, G_2, \dots, G_6\}$, then G'_0 is the reduction of G.

By Theorem 5, the following result follows immediately.

Corollary 6. Let G be a connected almost bridgeless simple graph of order n with

 $\delta(G) \ge \lfloor n/11 \rfloor - 1.$

Download English Version:

https://daneshyari.com/en/article/8901348

Download Persian Version:

https://daneshyari.com/article/8901348

Daneshyari.com