Traceability on 2-connected line graphs

Tao Tian ${ }^{\text {a }}$, Liming Xiong ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 102488, PR China
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 102488, PR China

A R T I C L E I N F O

Keywords:

Traceable
Line graph
Spanning trail
Dominating trail

Abstract

In this paper, we mainly prove the following: Let G be a connected almost bridgeless simple graph of order n sufficiently large such that $\bar{\sigma}_{2}(G)=\min \{d(u)+d(v): u v \in E(G)\} \geq$ $2(\lfloor n / 11\rfloor-1)$. Then either $L(G)$ is traceable or Catlin's reduction of the core of G is one of eight graphs of order 10 or 11 , where the core of G is obtained from G by deleting the vertices of degree 1 of G and replacing each path of length 2 whose internal vertex has degree 2 in G by an edge. We also give a new proof for the similar theorem in Niu et al. (2012) which has flaws in their proof.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For graph-theoretic notation not explained in this paper, we refer the reader to [2]. We consider only finite and loopless graphs in this paper. A graph is called multigraph if it contains multiple edges. A graph without multiple edges is called a simple graph or simply a graph. A graph G is traceable if it has a Hamilton path, i.e., a spanning path. For a vertex x of G, $N_{G}(x)$ is the neighborhood of x in G, and $d_{G}(x)$ is the degree of x in G. For a vertex set $S \subseteq V(G), N_{G}(S)=\cup_{x \in S} N_{G}(x)$. By $\delta(G)$ and $\Delta(G)$ we denote the minimum degree and the maximum degree of G, respectively. A graph is claw-free if it has no induced subgraph isomorphic to $K_{1,3}$. Similarly, a graph is triangle-free if it has no K_{3}. Define $D_{i}(G)=\left\{v \in V(G) \mid d_{G}(v)=i\right\}$,
 The girth of G, denoted by g, is the length of a shortest cycle of G. The line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G have at least one vertex in common. For a graph G, we define $\bar{\sigma}_{2}(G)=\min \{d(u)+d(v): u v \in E(G)\}$ and $\sigma_{2}(G)=\min \{d(u)+d(v): u v \notin E(G)\}$.

In [1,7], Harris et al. concerned how small the order of a claw-free, 2 -connected nontraceable graph is. They presented two smallest claw-free, 2-connected nontraceable graphs, both of which have order 18 and size 24, and proved the following result.

Theorem 1. (Harris and Mossinghoff [7] and Bullock et al. [1]) Let G be a 2-connected, claw-free graph with $|V(G)|<18$, then G is traceable.

A graph G is almost bridgeless if every cut edge of G is incident with a vertex of degree 1 . For almost bridgeless graphs, in [13], Xiong and Zong proved the following result.

Theorem 2. (Xiong and Zong [13]) Let G be a connected almost bridgeless simple graph of order n such that

$$
\bar{\sigma}_{2}(G)>2(\lfloor n / 10\rfloor-1) .
$$

[^0]

Fig. 1. Two graphs of order 10 that have no spanning trail.

If n is sufficiently large, then $L(G)$ is traceable.
Let G be a connected multigraph. For $X \subseteq E(G)$, the contraction G / X is the graph obtained from G by identifying the two ends of each edge $e \in X$ and deleting the resulting loops. Even when G is simple, G / X may not be simple. If Γ is a connected subgraph of G, then we write G / Γ for $G / E(\Gamma)$ and use v_{Γ} for the vertex in G / Γ to which Γ is contracted, and v_{Γ} is called a contracted vertex if $\Gamma \neq K_{1}$.

Let $O(G)$ be the set of vertices of odd degree in G. A graph G is collapsible if for every even subset $R \subseteq V(G)$, there is a spanning connected subgraph Γ_{R} of G with $O\left(\Gamma_{R}\right)=R . K_{1}$ is regarded as a collapsible graph.

In [3], Catlin showed that every multigraph G has a unique collection of maximal collapsible subgraphs $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{c}$. The reduction of G is $G^{\prime}=G /\left(\cup_{i=1}^{c} \Gamma_{i}\right)$, the graph obtained from G by contracting each Γ_{i} into a single vertex $v_{i}(1 \leq i \leq c)$. For a vertex $v \in V\left(G^{\prime}\right)$, there is a unique maximal collapsible subgraph $\Gamma_{0}(v)$ such that v is the contraction image of $\Gamma_{0}(v)$ and $\Gamma_{0}(v)$ is the preimage of v and v is a contracted vertex if $\Gamma_{0}(v) \neq K_{1}$. A graph G is reduced if $G^{\prime}=G$.

For a graph G, in [9], Niu et al. considered the traceability of $L(G)$ about $\bar{\sigma}_{2}(G)$ and $\sigma_{2}(G)$, respectively. They proved the following results, where F_{1}, F_{2} are depicted in Fig. 1.

Theorem 3. (Niu et al. [9]) Let G be a connected almost bridgeless simple graph of order n such that

$$
\begin{equation*}
\bar{\sigma}_{2}(G) \geq 2(\lfloor n / 10\rfloor-1) \tag{1.1}
\end{equation*}
$$

If n is sufficiently large, then either $L(G)$ is traceable or the reduction of G equals F_{1} or F_{2}.
Theorem 4. (Niu et al. [9]) Let G be a 2-edge-connected simple graph with girth $g=3$ or 4. If $\sigma_{2}(G) \geq \frac{2}{g-2}\left(\frac{n}{10}+g-4\right)$ and n is sufficiently large, then either $L(G)$ is traceable or the reduction of G equals F_{1} or F_{2}.

An edge cut X of G is essential if $G-X$ has at least two non-trivial components. For an integer $k>0$, a graph G is essentially k-edge-connected if G does not have an essential edge-cut X with $|X|<k$. Note that a graph G is essentially k-edgeconnected if and only if $L(G)$ is k-connected or complete.

Let G be an essentially 2-edge-connected graph with $\bar{\sigma}_{2}(G) \geq 5$. Then $D(G)=D_{1}(G) \cup D_{2}(G)$ is an independent set. Let E_{1} be the set of pendant edges in G. For each $x \in D_{2}(G)$, there are two edges e_{x}^{1} and e_{x}^{2} incident with x. Let $X_{2}(G)=\left\{e_{x}^{1} \mid x \in\right.$ $\left.D_{2}(G)\right\}$. Define

$$
G_{0}=G /\left(E_{1} \cup X_{2}(G)\right)
$$

In other words, G_{0} is obtained from G by deleting the vertices in $D_{1}(G)$ and replacing each path of length 2 whose internal vertex is a vertex in $D_{2}(G)$ by an edge. Note that G_{0} may not be simple.

A vertex set $V\left(G_{0}\right)$ is regarded as a subset of $V(G)$. A vertex in G_{0} is nontrivial if it is obtained by contracting some edges in $E_{1} \cup X_{2}(G)$ or it is adjacent to a vertex in $D_{2}(G)$ in G. Since $\bar{\sigma}_{2}(G) \geq 5$, all vertex in $D_{2}\left(G_{0}\right)$ are nontrivial. Let $X=D(G)$. In [12], G_{0} is denoted by $I_{X}(G)$. Following [10], we call G_{0} the core of G.

Let G_{0}^{\prime} be the reduction of G_{0}. For a vertex $v \in V\left(G_{0}^{\prime}\right)$. Let $\Gamma_{0}(v)$ be the maximum collapsible preimage of v in G_{0} and let $\Gamma(v)$ be the preimage of v in G. Note that $\Gamma(v)$ is the graph induced by edges composing of $E\left(\Gamma_{0}(v)\right)$ and some edges in $E_{1} \cup X_{2}(G)$. A vertex v in G_{0}^{\prime} is a nontrivial vertex if v is a contracted vertex (i.e., $\left.|V(\Gamma(v))|>1\right)$ or v is adjacent to a vertex in $D_{2}(G)$.

In this paper, we improve Theorems 3 and 4 and get the following results. Where the graphs $G_{1}, G_{2}, \ldots, G_{6}$ are depicted in Fig. 2.

Theorem 5. Let G be a connected almost bridgeless simple graph of order n such that

$$
\begin{equation*}
\bar{\sigma}_{2}(G) \geq 2(\lfloor n / 11\rfloor-1) \tag{1.2}
\end{equation*}
$$

If n is sufficiently large, then either $L(G)$ is traceable or $G_{0}^{\prime} \in\left\{F_{1}, F_{2}, G_{1}, G_{2}, \ldots, G_{6}\right\}$, where G_{0}^{\prime} is the reduction of G_{0}, G_{0} is the core of G. Particularly, if $G_{0}^{\prime} \in\left\{G_{1}, G_{2}, \ldots, G_{6}\right\}$, then G_{0}^{\prime} is the reduction of G.

By Theorem 5, the following result follows immediately.
Corollary 6. Let G be a connected almost bridgeless simple graph of order n with

$$
\delta(G) \geq\lfloor n / 11\rfloor-1
$$

https://daneshyari.com/en/article/8901348

Download Persian Version:
https://daneshyari.com/article/8901348

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: taotian0118@163.com (T. Tian), Imxiong@bit.edu.cn (L. Xiong).

