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a b s t r a c t 

In this work we show a rational approximation of the Dawson’s integral that can be imple- 

mented for high accuracy computation of the complex error function in a rapid algorithm. 

Specifically, this approach provides accuracy exceeding ∼10 −14 in the domain of practical 

importance 0 ≤ y < 0 . 1 ∩ | x + iy | ≤ 8 . A Matlab code for computation of the complex error 

function with entire coverage of the complex plane is presented. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The complex error function also widely known as the Faddeeva function can be defined as [1–6] 

w ( z ) = e −z 2 

(
1 + 

2 i √ 

π

∫ z 

0 

e t 
2 

dt 

)
, (1) 

where z = x + iy is the complex argument. It is a solution of the following differential equation [5] 

w 

′ ( z ) + 2 zw ( z ) = 

2 i √ 

π
, 

where the initial condition is given by w ( 0 ) = 1 . 

The complex error function is a principal in a family of special functions. The main functions from this family are the 

Dawson’s integral, the complex probability function, the error function, the Fresnel integral and the normal distribution 

function. 

The Dawson’s integral is defined as [7–12] 

daw ( z ) = e −z 2 
∫ z 

0 

e t 
2 

dt . (2) 

∗ Corresponding author. 

E-mail address: abrarov@yorku.ca (S.M. Abrarov). 

https://doi.org/10.1016/j.amc.2017.10.032 

0 096-30 03/© 2017 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2017.10.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2017.10.032&domain=pdf
mailto:abrarov@yorku.ca
https://doi.org/10.1016/j.amc.2017.10.032


S.M. Abrarov, B.M. Quine / Applied Mathematics and Computation 321 (2018) 526–543 527 

It is not difficult to obtain a relation between the complex error function and the Dawson’s integral. In particular, comparing 

right sides of Eqs. (1) and (2) immediately yields 

w ( z ) = e −z 2 + 

2 i √ 

π
daw ( z ) . (3) 

Another closely related function is the complex probability function. In order to emphasize the continuity of the complex 

probability function at ∀ y ∈ R , it may be convenient to define it in form of principal value integral [4–6] 

W ( z ) = P V 

i 

π

∫ ∞ 

−∞ 

e −t 2 

z − t 
dt (4) 

or 

W ( x, y ) = P V 

i 

π

∫ ∞ 

−∞ 

e −t 2 

( x + iy ) − t 
dt . 

The complex probability function has no discontinuity at y = 0 and x = t since according to the principal value we can 

write 

lim W ( x, y → 0 ) = e −x 2 + 

2 i √ 

π
daw ( x ) , (5) 

where x = Re [ z ] . 

There is a direct relationship between the complex error function (1) and the complex probability function (4) . In par- 

ticular, it can be shown that these functions are actually same on the upper half of the complex plain [4,5] 

W ( z ) = w ( z ) , Im [ z ] ≥ 0 . (6) 

Separating the real and imaginary parts of the complex probability function (4) leads to 

K ( x, y ) = P V 

y 

π

∫ ∞ 

−∞ 

e −t 2 

y 2 + ( x − t ) 
2 

dt, 

and 

L ( x, y ) = P V 

1 

π

∫ ∞ 

−∞ 

e −t 2 ( x − t ) 

y 2 + ( x − t ) 
2 

dt, (7) 

respectively, where the principal value notations emphasize that these functions have no discontinuity at y = 0 and x = t . In 

particular, in accordance with Eq. (3) , we can write 

K ( x, y = 0 ) ≡ lim K ( x, y → 0 ) = e −x 2 

and 

L ( x, y = 0 ) ≡ lim L ( x, y → 0 ) = 

2 √ 

π
daw ( x ) . 

As it follows from the identity (6) , for non-negative y we have 

w ( x, y ) = K ( x, y ) + iL ( x, y ) , y ≥ 0 . (8) 

The real part K ( x , y ) of the complex probability function is commonly known as the Voigt function that is widely used in 

many disciplines of Applied Mathematics [13–15] , Physics [4,16–22] , Astronomy [23] and Information Technology [24] . Math- 

ematically, the Voigt function K ( x , y ) represents a convolution integral of the Gaussian and Cauchy distributions [5,16,17] . The 

Voigt function is widely used in spectroscopy as it describes quite accurately the line broadening effects [4,18–22,25] . 

Although the imaginary part L ( x , y ) of the complex probability function also finds many practical applications (see for 

example [26,27] ), it has no a specific name. Therefore, further we will regard this function simply as the L -function. 

Other associated functions are the error function of complex argument [3,5] 

erf ( z ) = 1 − e −z 2 w ( iz ) , 
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