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This paper is concerned with a partially observed linear-quadratic game problem driven 

by forward–backward stochastic differential equations where the forward diffusion coeffi- 

cients do not contain control variables and the control domains are not necessarily convex. 

The drift term of the observation equation is linear with respect to the state, and there is 

correlated noise between the state and the observation equation. By virtue of the classi- 

cal spike variational method and the backward separation technique, we derive a neces- 

sary and a sufficient condition of the stochastic differential game problem. Then we obtain 

filtering equations and present a feedback representation form of the equilibrium point 

through Riccati equations. As a practical application, we solve a partial information in- 

vestment problem involving g-expectation as a convex risk measurement and give the nu- 

merical simulation to show the explicit investment strategy and illustrate some reasonable 

phenomena influenced by common financial parameters. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The general theory of the backward stochastic differential equation (BSDE) was first introduced by Pardoux and Peng 

[1] . If a BSDE coupled with a forward stochastic differential equation (SDE), it is called the forward–backward stochastic 

differential equation (FBSDE). In the stochastic control area, the form of the classical Hamiltonian system is one kind of 

FBSDEs. The classical Black–Scholes option pricing formula in the financial market can be deduced by a certain FBSDE. Some 

fundamental research based on FBSDEs is surveyed by Ma and Yong [2] . 

The game theory was first introduced by Von Neumann and Morgenstern [3] . Nash [4] made the fundamental contribu- 

tion in Non-cooperate Games and gave the notion of Nash equilibrium point. In recent years, many articles on stochastic 

differential game problems driven by stochastic differential equations appeared. Researchers try to consider the influence on 

several players rather than one player and try to find an equilibrium point rather than an optimal control. These problems 

are more complicated than the classical control problems but much closer to the reality. Yu and Ji [5] studied the LQ back- 

ward case. Yu [6] solved the LQ case on forward and backward system. Øksendal and Sulem [7] , Hui and Xiao [8] made a 

research on the maximum principle of forward–backward system. 
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Throughout the paper, we denote by R the Euclidean space; by (�, F , {F t } 0 ≤t≤T , P ) the complete probability space. For 

the classical stochastic differential game system, we have the following stochastic differential equation (SDE): {
dx v (t) = b ( t, x v (t) , v 1 (t) , v 2 (t) ) d t + σ ( t, x v (t) , v 1 (t) , v 2 (t) ) d W (t) , 
x v (0) = x 0 , 

where v (·) = (v 1 (·) , v 2 (·)) , W ( · ) is a Brownian motion, F t = σ { W (s ) | 0 ≤ s ≤ t} is the natural filtration. 

The cost functional: 

J ( v 1 (·) , v 2 (·) ) = E 

[∫ T 

0 

f 
(
t , x v (t ) , v 1 (t ) , v 2 (t ) 

)
dt + h (x v (T )) 

]
. (1.1) 

Under some well-posed assumption the system above, the general zero-sum stochastic differential game problem is rep- 

resented as follows: 

Problem P 0 . For any x 0 ∈ R , find a pair of (u 1 (·) , u 2 (·)) ∈ U 1 × U 2 such that 

J(u 1 (·) , u 2 (·)) = sup 

v 2 (·) ∈U 2 

(
inf 

v 1 (·) ∈U 1 
J(v 1 (·) , v 2 (·)) 

)
= inf 

v 1 (·) ∈U 1 

(
sup 

v 2 (·) ∈U 2 
J(v 1 (·) , v 2 (·)) 

)
. 

where U 1 × U 2 is a certain admissible control set. 

However, for the Problem P 0 , the expectation in (1.1) is just a linear expectation that cannot always represent the practical 

situation in the real world. In behavioral economics, such non-linear phenomenon can be regarded as personal preference or 

risk measurement in many articles including in [9–11] . Here, we replace the linear expectation by a generalized expectation 

called g-expectation introduced by Peng [12,13] , which can be seen as a convex risk measure and is induced by a backward 

stochastic differential equation (BSDE). 

Consider the following BSDE: {
−dη(t) = g(t , ζ (t )) dt − ζ (t ) dW (t ) , 
η(T ) = ξ . 

(1.2) 

Under certain assumptions, (1.2) exists a unique solution ( η( · ), ζ ( · )). If we also set g ( · , 0) ≡ 0, we can make the definition 

as follows: 

Definition 1. For each ξ ∈ F T , we call 

E g (ξ ) � η(0) , (1.3) 

the generalized expectation (g-expectation) of ξ related to g . 

We can know that the map ξ → E g (ξ ) includes all the properties that E have, except the linearity. And it is obvious that 

when g(·) = 0 , E g is reduced to the classical expectation E . 

Thus we can define the following cost functional with g-expectation: 

J g ( v 1 (·) , v 2 (·) ) = E g 
[∫ T 

0 

f 
(
t , x v (t ) , v 1 (t ) , v 2 (t ) 

)
dt + h (x v (T )) 

]
. (1.4) 

And our problem can be formulated in a generalized case as follows: 

Problem P g . For any x 0 ∈ R , find a pair of (u 1 (·) , u 2 (·)) ∈ U 1 × U 2 such that 

J g (u 1 (·) , u 2 (·)) = sup 

v 2 (·) ∈U 2 

(
inf 

v 1 (·) ∈U 1 
J g (v 1 (·) , v 2 (·)) 

)
= inf 

v 1 (·) ∈U 1 

(
sup 

v 2 (·) ∈U 2 
J g (v 1 (·) , v 2 (·)) 

)
, 

where U 1 × U 2 is a certain admissible control set. 

From (1.2) –(1.4) , we can see that 

η(T ) = ξ ( v 1 (·) , v 2 (·) ) = 

∫ T 

0 

f 
(
t , x v (t ) , v 1 (t ) , v 2 (t ) 

)
dt + h (x v (T )) . 

Now we define {
y v (t) = η(t) − ∫ t 

0 f ( s, x v (s ) , v 1 (s ) , v 2 (s ) ) ds, 
z v (t) = ζ (t) , 

then we have the following BSDE: {
−dy v (t) = ( g(t , z v (t )) + f (t , x v (t ) , v 1 (t ) , v 2 (t )) ) d t − z v (t) d W (t) , 
y v (T ) = h ( x v (T ) ) , 

(1.5) 

where ( y ( · ), z ( · )) is the unique adapted solution. 
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