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a b s t r a c t 

We establish a class of accelerated parameterized inexact Uzawa (APIU) algorithms for 

solving the complex symmetric linear systems. Our main contribution is accelerating the 

convergence of the PIU algorithm by making use of the extrapolation technique which is 

based on the eigenvalues of the iterative matrix. These accelerated parameterized inexact 

Uzawa algorithms involve two iteration parameters whose special choices can recover the 

parameterized inexact Uzawa algorithm and some other methods. First, the accelerated 

model for the PIU algorithm is established and the accelerated PIU algorithm is presented. 

Then we study the convergence of the corrected PIU algorithm. Moreover, we present the 

optimal iteration parameter and the corresponding optimal convergence factor for the PIU 

method. We also consider acceleration of the PIU iteraton by Krylov subspace methods. 

Numerical experiments are presented to illustrate the theoretical results and examine the 

numerical effectiveness of the new method. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Let n be a positive integer. We consider the iterative solution of systems of linear equations of the form 

Ax = b, A ∈ C n ×n and x, b ∈ C n , (1.1) 

where A ∈ C n × n is a complex symmetric matrix of the form 

A = W + i T , (1.2) 

and W , T ∈ R n × n are real, symmetric, and positive definite matrices. Here and in the sequel, we use i = 

√ −1 to denote the 

imaginary unit. Owing to the positive definite nature of the matrices T and W , we know that A is non-Hermitian. 

Complex symmetric linear systems of this kind arise in many important problems in scientific computing and engineer- 

ing applications, including diffuse optical tomography [1] , FFT-based solution of certain time-dependent PDEs [2] , quantum 

mechanics [3] , algebraic eigenvalue problems [4,5] , structural dynamics [6] , and lattice quantum chromodynamics [7] . For 

more details about the practical backgrounds of this class of problems, we refer to [8–13] and the references therein. 
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For solving the complex symmetric linear system (1.1) efficiently, some effective matrix-splitting-type iterative methods 

have been proposed, see [8–14,26,27,40] et al. Recently, a parameterized splitting iteration method for complex symmetric 

linear systems was proposed in [15] by Zhang and Zheng. In [16] , Bai et al. studied an efficient iterative method for the large 

sparse non-Hermitian positive definite system of linear equations based on the Hermitian and skew-Hermitian splitting of 

the coefficient matrix. Due to its promising performance and elegant mathematical properties, the HSS scheme immediately 

attracted considerable attention, resulting in numerous papers devoted to various aspects of the new algorithm. So we can 

apply the HSS iteration method [16] or its preconditioned variant PHSS (i.e., the preconditioned HSS, see [17] ) which were 

proposed by Bai et al. to compute an approximate solution of the linear system (1.1) . In addition, the convergence prop- 

erties of the PHSS method can be found in [18] . In [19,20] , Bai et al. further generalized the technique for constructing 

HSS iteration method for solving large sparse non-Hermitian positive definite system of linear equations to the normal and 

skew-Hermitian (NS) splitting obtaining a class of normal and skew-Hermitian splitting (NSS) iteration methods. Theoreti- 

cal analyses shown that the NSS iteration method converges unconditionally to the exact solution of the system of linear 

Eq. (1.1) . A potential difficulty with the HSS iteration approach is the need to solve the shifted skew-Hermitian sub-system 

of linear equations at each iteration step. Hence, Bai et al. presented a modification of the HSS (MHSS) iteration scheme 

in [12] and some of its basic properties are studied. Moreover, in [21] , the authors proposed a preconditioned variant of 

the modified HSS (PMHSS) iteration method for solving the complex symmetric systems of linear equations, and they also 

discussed the spectral properties of the PMHSS-preconditioned matrix in the paper. 

In this paper, we present a class of accelerated parameterized inexact Uzawa iteration methods for solving the complex 

symmetric linear system (1.1) . And we call this new algorithm APIU method for simplicity. The APIU method is based on 

the extrapolation method and the eigenvalues of the iterative matrix of the PIU iteration. The convergence of this new 

algorithm is also studied. The optimal iteration parameter and the corresponding optimal convergence factor for the PIU 

method are proposed. Moreover, we consider acceleration of the PIU iteraton by Krylov subspace methods such as GMRES 

method. Numerical are presented to illustrate the effective of our new method. 

The paper is organized as follows. In Section 2 , we introduce the parameterized inexact Uzawa method and establish the 

accelerated PIU model for the Eq. (1.1) , then the APIU algorithm is presented. Moreover, analysis of the convergence property 

of this new method is given in Section 3 . In Section 4 , some numerical experiments are given to show the efficiency of the 

APIU method. Finally, some conclusion remarks are proposed in Section 5 . 

The following notations will be used throughout this paper. We denote the identity matrix and the 0-matrix by I and 

O , respectively. For a matrix C ∈ R m × n , we denote the transpose of C by C � , and the rank of matrix C is denoted as rank( C ). 

Moreover, the spectral radius of C is denoted by ρ( C ). ‖ · ‖ 2 denotes the l 2 norm of the corresponding vector. 

2. The APIU method 

Let x = y + iz and b = p + iq, then from (1.1) and (1.2) , we can get (W + iT )(y + iz) = p + iq, which implies that we can 

obtain the following block two-by-two systems of linear equation [13] 

Du = 

(
W −T 
T W 

)(
y 
z 

)
= 

(
p 
q 

)
= g. (2.1) 

Conversely, from the linear Eq. (2.1) , we can get the complex symmetric linear system (1.1) . So the complex symmetric linear 

system (1.1) is formally identical to the above block two-by-two systems of linear Eq. (2.1) . Moreover, the block two-by-two 

systems of linear Eq. (2.1) can be formally regarded as a special case of the generalized saddle point problem [22–25] . It 

frequently arises from finite element discretizations of elliptic partial differential equation (PDE)-constrained optimization 

problems such as distributed control problems [28–32] and so on. 

Based on the parameterized inexact Uzawa (PIU) iteration method [32,33] for solving the following generalized saddle 

point problem (
A B 

B 

� −C 

)(˜ y ˜ z 

)
= 

(˜ p ˜ q 

)
, (2.2) 

in this section, we derive an accelerated PIU iteration method for solving the block two-by-two system of linear Eq. (2.1) . 

To this end, we first introduce the PIU iteration method proposed in Bai and Wang [33] for Eq. (2.2) . And this PIU iteration 

method is algorithmically described in the following. 

Method 2.1. Given initial vectors ̃  y (0) ∈ R n and ̃

 z (0) ∈ R n and two relaxation factors ω, τ with ω, τ � = 0. For k = 0 , 1 , 2 , . . . , 

until the iteration sequence 

{ 

( ̃  y (k ) � , ̃  z (k ) � ) � 
} 

converges to the exact solution of the saddle point problem (2.2) , compute { ˜ y (k +1) = ̃

 y (k ) + ωP −1 
(˜ p − A ̃

 y (k ) − B ̃

 z (k ) 
)
, 

˜ z (k +1) = ̃

 z (k ) + τQ 

−1 
(
B 

� ˜ y (k +1) − C ̃  z (k ) − ˜ q 
)
, 

where P ∈ R n × n and Q ∈ R n × n are prescribed symmetric positive definite matrices. 

If P � = A and ω = τ = 1 then the PIU iteration Method 2.1 yields inexact Uzawa algorithm [34–36] for solving the saddle 

point problems. Based on the above Method 2.1 [33] , we can get the following iteration algorithm. 
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