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a b s t r a c t 

Many phenomena in almost all areas of natural and engineering science are modelled by 

nonlinear differential equations. However, most of the explicit methods for time integra- 

tion of nonlinear models fail to preserve some qualitative properties such as positivity of 

solutions. The major purpose of this study is to suggest a new explicit positivity preserv- 

ing numerical method based on the exponential integrators. It is shown that the proposed 

method preserves the positivity of exact solution. Several examples are illustrated to con- 

firm the theoretical result. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Numerical schemes for nonlinear differential equations produce approximated results. However, it is expected for a nu- 

merical scheme to respect some qualitative properties of the exact solution. One of those important properties is preserv- 

ing the nonnegativity of the solution. The related subjects for nonnegativity are positivity and maximum principle. These 

subjects are equivalent for the linear equations [17] . We refer the reader to the study [5] and references therein for the 

maximum principle. In [5] instead of using maximum principle preserving scheme, the authors proposed a method which 

cuts off the negative values in the computed solution at each time step and then continues the time integration with the 

corrected solution. 

A great deal of effort has been spent for the positivity preserving of the differential equations. Mickens suggested a 

nonstandard finite difference scheme which preserves the positivity as well as the boundedness for differential equations 

in [6] , for reaction-diffusion equation in [7] , for Fisher’s PDE (partial differential equation) having nonlinear diffusion term 

in [8] . 

Preserving positivity also plays important role in mathematical biology and in chemical processes since the quantities 

such as population or concentration should be naturally nonnegative. Thus, considerable researches can be found in the lit- 

erature. For example, Mickens proposed in [9] the nonstandard scheme for a discrete model preserving the positivity for a 

coupled ordinary differential equation (ODE)’s modeling glycolysis which arises in living cells as a biochemical reaction, Dim- 

itrov and Kojouharov studied on a positive and elementary stable nonstandard finite difference methods for prey–predator 

systems in [3] , Arenas et al. developed a nonstandard numerical method in [1] for a SIRS (susceptible-infectious-recovered- 

susceptible) seasonal epidemiological model for RSV (Respiratory Syncytial Virus) transmission. In [16] the authors discussed 

procedures for nonnegative solutions of ODEs. They used some test problems which occur in chemistry and physics. 

The novelty of this paper is to derive and analyze a new explicit numerical method preserving the positivity based on 

the exponential integrators. To provide the theoretical result we shall first introduce exponential integrators and the general 
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discussion on positivity condition. Section 2 is dedicated for these requirements. The brief outlines are followed by the 

proof of positivity of the proposed method. In Section 3 , we use some test problems that occurs in chemistry, physics and 

mathematical biology to confirm our theoretical result. Finally, Section 4 involves conclusions and several remarks. 

2. Useful definitions and analysis of the method 

In this section, exponential integrators will be briefly introduced. Secondl y, we give the positivity condition on any system 

of ODEs. Finally, we derive and analyse a positivity preserving exponential integrator. 

Exponential integrators are derived from variation-of-constant formula for numerical treatment of stiff systems. For lin- 

ear equation these integrators produce exact solution as Nonstandard Finite Difference [6] and Exponentially Fitted Finite 

Difference [12,13] do. In general for nonlinear equations, nonlinear terms are discretized to obtain efficient and stable ex- 

plicit schemes. The overview of these integrators is given in [14] . We mainly consider exponential time differencing (ETD). 

Consider one-dimensional semi-linear initial value problem 

x ′ (t) = cx + F (x ) , x (0) = x 0 (1) 

where c is a constant and F ( x ) is nonlinear forcing term. The variation-of-constant formula for this ODE is given by 

x (t k +1 ) = x (t k ) e 
c�t + e c�t 

∫ �t 

0 

e −cτ F (x (t k + τ )) dτ. (2) 

The approximation F (x (t k + τ )) ≈ F (x (t k )) and exact integration of the exponential term inside the integral yield 

x k +1 = x k e 
c�t + F (x k ) 

e c�t − 1 

c 
(3) 

The scheme (3) is called ETD1 in [2] . 

A general d-dimensional autonomous nonlinear evolutionary system of ODEs 

x 

′ (t) = f (x (t)) x (0) = x 0 ≥ 0 , 0 ≤ t ≤ t end (4) 

where x (t) ∈ R 

d and f : R 

d → R 

d . 

Throughout the paper, the nonnegativity of a vector x ∈ R 

d is defined as nonnegativity of each component of that and 

denoted by x ≥ 0 . To guarantee the positivity of the solution, we impose the following conditions 

Assumption 1. 

f i (x ) ≥ 0 , ∀ x ≥ 0 such that x i = 0 , i = 1 , . . . , d. (5) 

where f i and x i denote the i th components of the f and x respectively. 

Due to this condition, vector field f pushes the trajectories back to positive domain whenever the solutions approach the 

boundary. For the detailed discussion we refer [4] . 

2.1. Derivation of the method 

We, now, turn our attention to d-dimensional nonlinear system given in Eq. (4) . By adding and subtracting A x ( t ) where 

A ∈ R 

d×d and by using variation-of-constant formula we have 

x (t k +1 ) = e �tA x (t k ) + 

∫ t k +1 

t k 

e ( t k +1 −s ) A ( f (x (s )) − A x (s ) ) ds. (6) 

By following the lines in deriving ETD1 we have the following scheme, which is denoted by PETD 1 for Eq. (4) 

X k +1 = X k + ϕ 1 (�tA ) f (X k )�t. (7) 

where ϕ 1 (A ) = 

(
e A − I 

)
A 

−1 is a matrix valued function. It is easy to see PETD 1 is a consistent scheme for any invertible 

matrix A . This provides us with flexibility to select a suitable A matrix. This matrix might be depend on X k at each time 

level k . We prefer the notation A x k 
to emphasize this dependence. 

2.2. Positivity preserving PETD1 

Before writing the explicit expression A x k 
for d-dimensional system, let us discuss the following one-dimensional case 

x ′ (t) = f (x (t)) x (0) = x 0 ≥ 0 , 0 ≤ t ≤ t end (8) 

where f : R → R . Assumption 1 implies f (0) ≥ 0. The corresponding PETD1 method becomes 

x k +1 = x k + 

(
e �tα − 1 

α

)
f (x k ) . (9) 
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