
Applied Mathematics and Computation 320 (2018) 754–768

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Nonlinear function inversion using k -vector

David Arnas a , ∗, Daniele Mortari b

a Centro Universitario de la Defensa Zaragoza, Crta. Huesca s/n, 50090 aragoza, Spain
b Aerospace Engineering, Texas A&M University, College Station, TX 77843-3141, USA

a r t i c l e i n f o

Keywords:

Root finders

Nonlinear functions

Convergence acceleration

Computational efficiency

a b s t r a c t

This work introduces a general numerical technique to invert one dimensional analytic

or tabulated nonlinear functions in assigned ranges of interest. The proposed approach is

based on an “optimal” version of the k -vector range searching, an ad-hoc modification de-

vised for function inversion. The optimality consists of retrieving always the same number

of data (1 , 2 , . . .) for a specified searching range to initiate the root solver. This provides

flexibility to adapt the technique to a variety of root solvers (e.g., bisection, Newton, etc.),

using a specified number of starting points. The proposed method allows to build an in-

verse function toolbox for a set of specified nonlinear functions. In particular, the method

is suitable when intensive inversions of the same function are required. The inversion is

extremely fast (almost instantaneous), but it requires a one-time preprocessing effort.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in science involve computing the inverse of nonlinear functions with unknown analytical expressions [1] .

Examples of these are: the Airy function [2,3] (in optics, fluid mechanics, elasticity, or quantum physics), the Bessel’s inte-

grals [4,5] (in many scientific problems, as in quantum field, and condense matter theory problems), the Fresnel’s inte-

grals [6,7] (in quantum mechanics and optics), the Dawson’s integrals [8,9] (in relative hydrodynamics and wave problems),

and the error function [10,11] . A great number of numerical algorithms have been developed over the years to calculate

these functions, while their inverses are computed by classic root finders and proper initial guesses. The key point here is:

how to obtain a very accurate initial guess as fast as possible ? The purpose of this paper is, indeed, the development of an

algorithm providing (almost instantaneously) initial guesses with accuracy increasing with the memory available.

The most classic and common root finders are Newton–Raphson, regula-falsi, bisection, secant, and fixed-point. Recently,

other general root finders were developed to increase performance, based on Adomian decomposition method [12,13] and

modifications of the Newton–Raphson algorithm [14,15] . However, these methodologies only allow to find one root at a time

in nonlinear equations, with increasing complexity when multiple roots are to be computed.

In this work, we introduce a general algorithm to invert one-dimensional functions, which is based on generating a first

approximation to the root using the k -vector range searching methodology. Then, the final root is obtained by the applica-

tion of another root finder such as Newton–Raphson or regula-falsi. The advantages of this methodology over the existing

methods are that it allows to find all the roots of the function at the same time and that it can be adapted to each prob-

lem in study . On the other hand, its disadvantage is that it requires to perform an initial preprocessing for each function,

∗ Corresponding author.

E-mail address: darnas@unizar.es (D. Arnas).

https://doi.org/10.1016/j.amc.2017.10.009

0 096-30 03/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.amc.2017.10.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2017.10.009&domain=pdf
mailto:darnas@unizar.es
https://doi.org/10.1016/j.amc.2017.10.009

D. Arnas, D. Mortari / Applied Mathematics and Computation 320 (2018) 754–768 755

making the method suitable when intensive inversions of the same function are required and/or when a toolbox of pre-

scribed inverse functions is needed.

The k -vector technique has its origin in the spacecraft attitude estimation problem using star trackers, where the identi-

fication of the observed stars (Star-ID) is required in order to estimate the spacecraft orientation. This process must be done

as fast as possible (to improve the performance of the control system) by an onboard computer with limited capabilities. To

solve this problem, a fast range searching technique, called k -vector, was developed [16,17] . Currently, the k -vector is at the

heart of Pyramid [18] , the state-of-the-art of Star-ID algorithms, currently operating in several satellites.

The most important property of the k -vector is that, once the preprocessing effort is done for a given database, the

searching process becomes independent from the database size , which makes the method especially suitable for large databases.

Compared with the most common searching algorithm, the binary-search technique, the k -vector has a complexity of O(3) ,

whilst the binary-search technique has a complexity of O(2 log 2 n) , where n is the database size.

The k -vector is a general range searching technique, particularly suitable for retrieving data from static databases (such

as star catalogs) [19] . However, this technique has recently been applied to solve a variety of different problems, such as

sampling [20] , interpolation, and estimation [21] .

This work focuses on the application of the k -vector technique to fast function inversion, introducing a general method-

ology to invert any one-dimensional nonlinear function in specific ranges of interest. In particular, the technique allows to

speed the convergence of other root finders, providing an initial root approximation, or for bracketing all the roots of a

given function. This study shows how to solve particular problems the technique may deal with, such as singularities of the

function, piecewise function definition, and functions with regions with very different derivative values. Moreover, and in

order to improve the performance of the function inversion, an optimal k -vector technique is here introduced, which can be

applied in combination with any root solver to obtain machine error precision.

The optimal k -vector is an ad-hoc improvement of the k -vector methodology, specifically developed for function inver-

sion. It is based on the idea of finding the distribution of points, for a specific function, in order to always retrieve the same

number of elements to initiate the root finder. This way, the searching algorithm becomes adaptive, by retrieving the initial

guess(es) as the selected root solver asks for. One example of this is to get two points bracketing the roots, a property that

is required for bisection and regula-falsi algorithms. In case a Newton root solver is selected, the k -vector approach is able

to provide just one point – the closest to the root – for the iteration initialization.

Furthermore, when the function to invert is computationally intensive, the inverse process can be performed with no

function evaluations . The process requires a more intensive preprocessing, producing in general a larger database that will be

used to get fast approximations of the roots with no function evaluations. This will reduce the root accuracy but it increases

the inverse process speed considerably.

Simple and detailed examples are presented in order to show the procedure and potential of the methodology in a

clear manner. These examples include the Gamma function, the Airy function of the first kind, the Bessel integral, Kepler’s

equation and the Gaussian integral.

2. Background on the k -vector

The range searching problem consists on retrieving, in a database of size n , all the elements that are contained in a given

interval, [y a , y b], where y a and y b are the lower and upper bounds of the interval, respectively. The most common searching

algorithms are based on the binary search technique, that has complexity O(2 log 2 n) , and the search by hashing , which is

fast on the average case while it can be linear in the worst case due to the collision problem

1 affecting the method. The

k -vector range searching technique is as fast as a hashing method (with best case complexity O(3)), which has no collision

problem but that may include some of the closest elements to the query range. 2 However, it requires a very fast preprocessing

effort (provided in the appendix), as fast as just reading the sorted database. These properties make the k -vector particularly

suitable for searching in large databases, where the worst case complexity goes asymptotically to O(3) as more memory is

available to store the k -vector elements [22] .

The k -vector is built using a sorted database ordered in the ascending mode and then generating a vector of indexes

containing the information of the number of elements below a mapping function for specific values of the function. In this

document, a straight line is assumed to be used as mapping function, since it provides the best speed performance for the

methodology. Fig. 1 shows a random database (left), the sorted database (right), and the k -vector mapping function (line).

Let n be the number of elements of the database, being y (i) the i th element, and s the vector containing the sorted

database y , that is:

s (i) ≤ s (i + 1) , ∀ i ∈ [1 , n − 1] . (1)

Therefore, the minimum and maximum values of the database are y min = s (1) and y max = s (n) . Let I be the sorting indexes

vector relating y and s , that is:

s (i) = y(I(i)) where i = { 1 , 2 , . . . , n } . (2)

1 The collision issue is due to the use of modular arithmetic to assign bins to elements. As a consequence of that, elements with values far from each

other may be assigned to the same bin.
2 The expected number of these extraneous elements depends on the nonlinearity of the database.

Download	English	Version:

https://daneshyari.com/en/article/8901477

Download	Persian	Version:

https://daneshyari.com/article/8901477

Daneshyari.com

https://daneshyari.com/en/article/8901477
https://daneshyari.com/article/8901477
https://daneshyari.com/

