JID: AMC

ARTICLE IN PRESS

[m3Gsc;May 17, 2017;16:3]

霐

Applied Mathematics and Computation 000 (2017) 1-8

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Subclass of m-quasiconformal harmonic functions in association with Janowski starlike functions

F.M. Sakar^a, M. Aydoğan^{b,*}

^a Department of Mathematics, Dicle University, Diyarbakır, Turkey ^b Department of Mathematics, Isik University, Campus of Sile, Turkey

ARTICLE INFO

Article history: Available online xxx

MSC: 30C45

Keywords: Starlike functions Harmonic mapping Distortion theorem Growth theorem Convex combination Convolution properties

ABSTRACT

Let's take $f(z) = h(z) + \overline{g(z)}$ which is an univalent sense-preserving harmonic functions in open unit disc $\mathbb{D} = \{z : |z| < 1\}$. If f(z) fulfills $|w(z)| = |\frac{g'(z)}{h'(z)}| < m$, where $0 \le m < 1$, then f(z) is known m-quasiconformal harmonic function in the unit disc (Kalaj, 2010) [8]. This class is represented by $S_{H(m)}$.

The goal of this study is to introduce certain features of the solution for non-linear partial differential equation $\overline{f}_{\overline{z}} = w(z)f(z)$ when |w(z)| < m, $w(z) < \frac{m^2(b_1-z)}{m^2-b_1z}$, $h(z) \in S^*(A, B)$. In such case $S^*(A, B)$ is known to be the class for Janowski starlike functions. We will investigate growth theorems, distortion theorems, jacobian bounds and coefficient ineqaulities, convex combination and convolution properties for this subclass.

© 2017 Published by Elsevier Inc.

1. Introduction

Let's take Ω which is a family of regular functions $\phi(z)$ in the disc \mathbb{D} and fulfilling $\phi(0) = 0$, $|\phi(z)| < 1$ for each $z \in \mathbb{D}$. Then, the family of functions $p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$ (which is regular in \mathbb{D}) is shown by P(A, B) for arbitrary fixed real numbers $A, B, -1 \le B < A \le 1$. In this condition p(z) is in P(A, B) if and only if

$$p(z) = \frac{1 + A\phi(z)}{1 + B\phi(z)} \tag{1.1}$$

for certain $\phi(z)$ is an element of Ω and each z is in \mathbb{D} .

Furthermore, lets take $S^*(A, B)$ indicating the class of regular functions $s(z) = z + c_2 z^2 + c_3 z^3 + \cdots$ is an element of \mathbb{D} and $s(z) \in S^*(A, B)$ if and only if

$$z\frac{s'(z)}{s(z)} = p(z)$$
 (1.2)

for certain p(z) is an element of P(A, B) and each z is in \mathbb{D} [7]. Let's take $s_1(z) = z + d_2 z^2 + \cdots$ and $s_2(z) = z + e_2 z^2 + \cdots$ which are the family of analytic functions belong to \mathbb{D} . If a function of $\phi(z) \in \Omega$ such that $s_1(z) = s_2(\phi(z))$ exists for each $z \in \mathbb{D}$, then Subordination and Lindelöf principle [3,5] implies that $s_1(z)$ is subordinate to $s_2(z)$ and $s_1(z) \prec s_2(z)$ can be written if and only if $s_1(\mathbb{D}) \subset s_2(\mathbb{D})$, $s_1(0) = s_2(0)$ and $s_1(\mathbb{D}_r) \subset s_2(\mathbb{D}_r)$, where $\mathbb{D}_r = \{z : |z| < r, 0 < r < 1\}$.

http://dx.doi.org/10.1016/j.amc.2017.05.013 0096-3003/© 2017 Published by Elsevier Inc.

Please cite this article as: F.M. Sakar, M. Aydoğan, Subclass of m-quasiconformal harmonic functions in association with Janowski starlike functions, Applied Mathematics and Computation (2017), http://dx.doi.org/10.1016/j.amc.2017.05.013

^{*} Corresponding author.

E-mail addresses: mugesakar@hotmail.com (F.M. Sakar), melike.aydogan@isikun.edu.tr (M. Aydoğan).

JID: AMC

ARTICLE IN PRESS

2

F.M. Sakar, M. Aydoğan/Applied Mathematics and Computation 000 (2017) 1-8

Ultimately, a harmonic mapping in \mathbb{D} , which is a complex-valued harmonic function f, transforms \mathbb{D} onto the domain $f(\mathbb{D})$. The mapping f is written as $f(z) = h(z) + \overline{g(z)}$ and \mathbb{D} is a simply-connected domain. The sum of h(z) and g(z), which are analytic in \mathbb{D} , is known as canonical representation. They have the expansions of power series given below

$$h(z) = \sum_{m=0}^{\infty} a_m z^m, \quad g(z) = \sum_{m=0}^{\infty} b_m z^m$$
(1.3)

where a_n , $b_n \in C$, n = 0, 1, 2, 3, ... In this case h(z) and g(z) are the analytic and co-analytic parts of f(z), respectively. Duren's monograph in [4] showed that the following equation is correct for relation between Jacobian and local univalent of f(z).

$$J_f = |h'(z)|^2 - |g'(z)|^2 \neq 0 \Leftrightarrow f(z).$$
(1.4)

This result reveals that, if the conditions of |g'(z)| > |h'(z)| or |g'(z)| < |h'(z)| hold in \mathbb{D} , the locally univalent harmonic mappings are known to be sense-preserving or sense-reserving in \mathbb{D} respectively [12].

This paper is restricted to sense-preserving harmonic mappings. It is remarkable to note that the canonical representation of f(z) is sense-preserving if and only if h'(z) doesn't cancel out in \mathbb{D} . $w(z) = \frac{g'(z)}{h'(z)}$, which is known second dilatation, satisfies the inequality of |w(z)| < 1 for each $z \in \mathbb{D}$. As a result, each sense-preserving harmonic mapping class in \mathbb{D} with $a_0 = b_0 = 0$ and $a_1 = 1$ are shown by S_H . Hence S_H covers the the class of S which is univalent. The family of each mappings $f \in S_H$, which has the condition, g'(0) = 0, i.e., $b_1 = 0$ is represented by S_H^0 . Thus, it can be easily seen that $S \subset S_H^0 \subset S_H$. The lemma and theorem given below are required for the goal of this study.

Lemma 1.1 ([6]). Let's take a function of $\phi(z)$ which is non-constant in \mathbb{D} and under the condition of $\phi(0) = 0$. If $|\phi(z)|$ reaches to the highest value of its at |z| = r and z_0 , then $z_0\phi'(z_0) = k\phi(z_0)$, $k \ge 1$.

Theorem 1.2 ([7]). If s(z) is an element of $S^*(A, B)$, then the following equations can be written for |z| = r and 0 < r < 1.

$$F(r, -A, -B) \le |s(z)| \le F(r, A, B)$$
 (1.5)

$$F(r, A, B) = \begin{cases} r(1 + Br)^{\frac{A-B}{B}} \text{ for } B \neq 0, \\ re^{Ar} \text{ for } B = 0. \end{cases}$$
(1.6)

These sharp bounds are obtained in $z = re^{i\theta}$ where θ changes from zero to 2π for

$$s(z) = \begin{cases} z(1 + Be^{-i\theta}z)^{\frac{A-B}{B}} \text{ for } B \neq 0, \\ ze^{Ae^{-i\theta}z} \text{ for } B = 0. \end{cases}$$
(1.7)

2. Main results

Lemma 2.1. Let p(z) is an element of P(A, B). If

$$z\frac{s'(z)}{s(z)} = p(z) = (A + iB) + p_1 z + p_2 z^2 + \cdots .$$
(2.1)

be analytic in \mathbb{D} and satisfies the condition $\operatorname{Rep}(z) > 0$ then

$$\frac{s(z)M(A, B, -r)}{z(1-r^2)} \le s'(z) \le \frac{s(z)M(A, B, r)}{z(1-r^2)}$$
(2.2)

where $M(A, B, r) = \frac{2Ar + (A^2 + (1+A^2) + B^2(1-r^2)^2)}{1-r^2}$.

Proof. Let $p(z) = (A + iB) + p_1(z) + p_2 z^2 + \cdots$ is analytic in the open unit disc \mathbb{D} and satisfies the condition Rep(z) > 0 then the function

$$p_1(z) = \frac{1}{A}(p(z) - iB)$$

is in *P*. (See [9]). On the other hand if $p_1(z)$ is element of *P*, then we have

$$|p_1(z) - \frac{1+r^2}{1-r^2}| \le \frac{2r}{1-r^2}$$
(2.3)

After algebraic calculation we get the result. \Box

Lemma 2.2. Let's consider $f(z) = h(z) + \overline{g(z)} \in S_H$ and $h(z) \in S^*(A, B)$, then

$$\frac{g(z)}{h(z)} = \frac{m^2(b_1 - \phi(z))}{m^2 - \overline{b_1}\phi(z)} \text{ where } \phi(z) \in \Omega \text{ and } 0 \le m < 1.$$

Please cite this article as: F.M. Sakar, M. Aydoğan, Subclass of m-quasiconformal harmonic functions in association with Janowski starlike functions, Applied Mathematics and Computation (2017), http://dx.doi.org/10.1016/j.amc.2017.05.013

Download English Version:

https://daneshyari.com/en/article/8901546

Download Persian Version:

https://daneshyari.com/article/8901546

Daneshyari.com