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ARTICLE INFO ABSTRACT

Article history: The paper deals with handling multiple subdomains per computational core in the PER-
Available online xxx MON toolbox, namely in the PermonFLLOP module, to fully exploit the potential of the
Total Finite Element Tearing and Interconnecting (TFETI) domain decomposition method

?;}é;vlords: (DDM). Most authors researching FETI methods present weak parallel scalability with one
Domain decomposition method subdomain assigned to each computational core, and call it just parallel scalability. Here
PETSC we present an extension showing the data of more than one subdomain being held by each
PERMON MPI process. Numerical experiments demonstrate the theoretically supported fact that for
Scalability the given problem size and number of processors, the increased number of subdomains
Oversubscription leads to better conditioning of the system operator, and hence faster convergence. More-

over, numerical, memory, strong parallel, and weak parallel scalability is reported, and
optimal numbers of subdomains per core are examined. Finally, new PETSc matrix types
dealing with the aforementioned extension are introduced.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Finite Element Tearing and Interconnecting (FETI) methods form an important subclass of non-overlapping domain de-
composition methods (DDM) [1-6]. They proved to be very successful for the solution of large engineering problems de-
scribed by elliptic PDEs. These methods solve an original problem by splitting it into smaller subdomain problems that are
independent, allowing natural parallelization. The methods blend direct and iterative solvers, taking the best of both. Con-
tinuity of the primal solution between subdomains is then enforced using the Lagrange multipliers which are found by the
iterative solver. Subdomain problems are solved using the direct solver. The PermonFLLOP library, being a part of the so-
called PERMON toolbox [7], implements these methods. This library is based on PETSc [8] and uses the MPI [9] standard for
parallelization.

The original FETI-1 method was introduced by Farhat and Roux [1,10]. Farhat, Mandel, and Roux [11] proved so called
numerical scalability, i.e. the number of iterations is fixed for the fixed ratio of decomposition and discretization parameters.
This established a natural effort to decompose the domain into a large number of subdomains. Yet it is still usual that FETI
implementations support only one subdomain per computational core.

Here we consider the benefits of having a large number of subdomains per core. It reduces the condition number of the
system operator, number of iterations, computational costs of the stiffness matrix factorization and subsequent triangular
solves, and also memory occupied by the factors. This approach is known from [12], where the authors assume distributed
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shared memory systems. Their work was extended in [13], dealing with parallel distributed memory system and experiments
with up to several millions degrees of freedom (DOFs). A similar idea is used in the multilevel FETI approach [14,15].

Comparing the sizes of benchmarks reported in [16] which have a maximum of 12 x 12 x 12 elements per subdomain
with those reported nowadays with e.g. more than 36 x 36 x 36 elements per subdomain on ARCHER [17], we see the enor-
mous progress made in designing supercomputers. See the setting of the first two benchmarks in Section 5.

This paper focuses on details of the PETSc implementation. It presents a new matrix type to efficiently handle data of
multiple subdomains on one core. Furthermore, it especially presents strong scalability, which is very rare in papers. Most
often, only weak scalability is reported. So the contribution of this paper is presenting systematically both these scalabilities
on large-scale problems, and proving that the ideas of [13] are still relevant for today’s supercomputers with thousands of
computational nodes and tens of cores per node.

The rest of the paper is organized as follows. In Section2, the TFETI method is explained including spectral properties
of the system operator. Section3 briefly introduces our PERMON toolbox. Section4 deals with a new PETSc matrix type
enabling more subdomains per MPI process. Finally, benefits of the new implementation are demonstrated by numerical
experiments in Section 5, where we test four benchmarks for parallel, numerical, and memory scalability up to 700 million
DOFs.

2. The TFETI method

FETI-1 [1,10] is DDM based on decomposing the original spatial domain into smaller non-overlapping subdomains. Con-
tinuity between these subdomains is enforced by the Lagrange multipliers enforcing fulfillment of specific “gluing” linear
constraints. The original FETI-1 method assumes that the boundary subdomains inherit Dirichlet conditions from the origi-
nal problem where the conditions are embedded into the linear system arising from FEM. This means physically that sub-
domains whose interfaces intersect the Dirichlet boundary are fixed, while others are kept floating; in the linear algebra
speech, the corresponding subdomain stiffness matrices are non-singular and singular, respectively.

The basic idea of the Total-FETI (TFETI) method [4,18] is to keep all the subdomains floating and to enforce the Dirichlet
boundary conditions by means of a constraint matrix and Lagrange multipliers, similarly to the gluing conditions along sub-
domain interfaces. This simplifies implementation of the stiffness matrix generalized inverse. The key point is that nullspaces
of the subdomain stiffness matrices are known a priori, have the same dimension, and can be formed without any com-
putation from the mesh data. Furthermore, each local stiffness matrix can be regularized cheaply, and the inverse of the
resulting non-singular matrix is at the same time a generalized inverse of the original singular one [19].

Let Np, Ng, Ny, Nc denote the primal dimension, the dual dimension, the nullspace dimension and the number of pro-
cesses available for our computation, respectively. The primal dimension means the number of all DOFs including those
arising from duplication on the interfaces. The dual dimension is the total number of all equality constraints. Let us con-
sider a partitioning of the global domain €2 into Ng subdomains ©5,s =1, ..., Ng (Ns>N¢). To each subdomain S, there
corresponds the subdomain stiffness matrix K°, the subdomain nodal load vector f5, the matrix RS whose columns span the
nullspace (kernel) of K°, and the signed boolean matrix B® defining connectivity of the subdomain s with all its neighbor-
ing subdomains. In the case of TFETI, B also enforces the Dirichlet boundary conditions. The local objects K®, ff, R® and B*
constitute global objects

K =diag(K", ..., K™) e RN R=diag(R!, ..., RY%) ¢ RN,
B=[B'.....B%] e RN, F=1UDT T e RN,

where diag means a block-diagonal matrix consisting of the diagonal blocks in brackets. Note that columns of R also span
the nullspace of K.

Let us mention that the matrix B can be split vertically into two blocks corresponding to the gluing part B; and the
Dirichlet part Bp, and at the same time horizontally into blocks B%, s =1, ..., Ns, where each block B* corresponds to sub-
domain ©° and consists of the gluing part B and the Dirichlet part B},. Overall, B possesses the following structure:

1 Ns
B= [gﬂ = [;G ﬁgs ] =[B' ... B%].
p ... Bp

The matrix Bg is constructed in such a way that for each pair of connected DOFs, a row with exactly two appropriately
placed nonzero values —1 and 1 are added to Bg. For numerical and implementation reasons, it is recommended to use fully
redundant connections, i.e. all DOFs in the decomposed problem representing the same DOF in the undecomposed problem
are connected to each other. Moreover, the +1 values of B; must be scaled by 1/./m where m is the multiplicity (number
of DOFs in the group). Note that [11] introduces this scaling as a part of the FETI preconditioners. However, it makes sense
even if preconditioning is not used, since it improves conditioning on its own.

Similarly, for each Dirichlet boundary DOF, Bp contains a separate row with the appropriately placed value of 1. Notice
B}, is a zero matrix if the boundary of Q5 does not intersect with the Dirichlet boundary. For more details, see [20].

For the sake of simplicity, let us assume that the boundary (interface) DOFs are numbered last, and index sets i and b
correspond to the internal and boundary DOFs, respectively. In the TFETI approach, index set b includes the DOFs on the
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