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a b s t r a c t 

We construct logical gates via topology optimisation (aimed to solve a station problem 

of heat conduction) of a conductive material layout. Values of logical variables are repre- 

sented by high and low values of a temperature at given sites. Logical functions are imple- 

mented via the formation of an optimum layout of conductive material between the sites 

with loading conditions. We implement and and xor gates and a one-bit binary half-adder. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Any programmable response of a material to external stimulation can be interpreted as computation. To implement 

a logical function in a material one must map space–time dynamics of an internal structure of a material onto a space 

of logical values. This is how experimental laboratory prototypes of unconventional computing devices are made: logical 

gates, circuits and binary adders employing interaction of wave-fragments in light-sensitive Belousov–Zhabotinsky media 

[1] , swarms of soldier crabs [2] , growing lamellipodia of slime mould Physarum polycephalum [3] , crystallisation patterns 

in “hot ice” [4] , peristaltic waves in protoplasmic tubes [5] . In many cases logical circuits are ‘built’ or evolved from a 

previously disordered material [6] , e.g. networks of slime mould Physarum polycephalum [7] , bulks of nanotubes [8] , nano 

particle ensembles [9,10] . In these works the computing structures could be seen as growing on demand, and logical gates 

develop in a continuum where an optimal distribution of material minimised internal energy. A continuum exhibiting such 

properties can be coined as a “self-optimising continuum”. Slime mould of Physarum polycephalum well exemplifies such a 

continuum: the slime mould is capable of solving many computational problems, including mazes and adaptive networks 

[11] . Other examples of the material behaviour include bone remodelling [12] , roots elongation [13] , sandstone erosion [14] , 

crack and lightning propagation [15] , growth of neurons and blood vessels, etc. Some other physical systems suitable for 

computations were also proposed in [6,16–18] . In all these cases, a phenomenon of the formation of an optimum layout 

of material is related to non-linear laws of material behaviour, resulting in the evolution of material structure governed by 

algorithms similar to those used in a topology optimisation of structures [19] . We develop the ideas of material optimisation 

further and show, in numerical models, how logical circuits can be build in a conductive material self-optimise its structure 

governed by configuration of inputs and outputs. 

The paper is structured as follows. In Section 2 we introduce topology optimisation aimed to solve a problem of a sta- 

tionary heat conduction. In Section 3 we describe the algorithm parameters for the considered cases. Gates and and xor 

are designed and simulated in Sections 4 and 5 . We design one-bit half-adder in Section 6 . Directions of further research 

are outlined in Section 7 . 
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2. Topology optimisation 

A topology optimisation in continuum mechanics aims to find a layout of a material within a given design space that 

meets specific optimum performance targets [20–22] . The topology optimisation is applied to solve a wide range of prob- 

lems [23] , e.g. maximisation of heat removal for a given amount of heat conducting material [24] , maximisation of fluid 

flow within channels [25] , maximisation of structure stiffness and strength [23] , development of meta-materials satisfying 

specified mechanical and thermal physical properties [23] , optimum layout of plies in composite laminates [26] , the de- 

sign of an inverse acoustic horn [23] , modelling of amoeboid organism growing towards food sources [27] , optimisation of 

photonics-crystal band-gap structures [28] . 

A standard method of the topology optimisation employs a modelling material layout that uses a density of material, ρ , 

varying from 0 (absence of a material) to 1 (presence of a material), where a dependence of structural properties on the 

density of material is described by a power law. This method is known as Solid Isotropic Material with Penalisation (SIMP) 

[29] . An optimisation of the objective function consists in finding an optimum distribution of ρ: min ρ f ( ρ). 

The problem can be solved in various numerical schemes, including the sequential quadratic programming (SQP) [30] , 

the method of moving asymptotes (MMA) [31] , and the optimality criterion (OC) method [23] . The topology optimisation 

problem can be replaced with a problem of finding a stationary point of an ordinary differential equation (ODE) [19] . Con- 

sidering density constraints on ρ , the right term of ODE is equal to a projection of the negative gradient of the objective 

function. Such optimisation approach is widely used in the theory of projected dynamical systems [32] . Numerical schemes 

of topology optimisation solution can be found using simple explicit Euler algorithm. As shown in [33] iterative schemes 

match the algorithms used in bone remodelling literature [34] . 

In this work the topology optimisation problem is applied to heat conduction problems [35] . Consider a region in the 

space � with a boundary � = �D ∪ �N , �D ∩ �N = ∅ , separated for setting the Dirichlet ( D ) and the Neumann ( N ) boundary 

conditions. For the region � we consider the steady-state heat equation given in: 

∇ · k ∇T + f = 0 in � (1) 

T = T 0 on �D (2) 

(k ∇T ) · n = Q 0 on �N (3) 

where T is a temperature, k is a heat conduction coefficient, f is a volumetric heat source, and n is an outward unit normal 

vector. At the boundary �D a temperature T = T 0 is specified in the form of Dirichlet boundary conditions, and at the bound- 

ary �N of the heat flux ( k ∇T ) · n is specified using Neumann boundary conditions. The condition (k ∇T ) · n = 0 specified at 

the part of �N means a thermal insulation (adiabatic conditions). 

When stating topology optimisation problem for a solution of the heat conduction problems it is necessary to find an 

optimal distribution for a limited mass of conductive material M in order to minimise heat release, which corresponds to 

designing a thermal conductive device. It is necessary to find an optimum distribution of material density ρ within a given 

area � in order to minimise the cost function: 

Minimise C(ρ) = 

∫ 
�

∇ T · (k (ρ) ∇ T ) (4) 

Subject to 

∫ 
�

ρ ≤ M (5) 

In accordance with the SIMP method the region being studied can be divided into finite elements with varying material 

density ρ i assigned to each finite element i . A relationship between the heat conduction coefficient and the density of 

material is described by a power law as follows: 

k i = k min + (k max − k min ) ρ
p 
i 
, ρi ∈ 	 0 , 1 
 (6) 

where k i is a value of heat conduction coefficient at the i th finite element, ρ i is a density value at the i th element, k max is 

a heat conduction coefficient at ρi = 1 , k min is a heat conduction coefficient at ρi = 0 , p is a penalisation power ( p > 1). 

In order to solve the problems (1) –(6) we apply the following techniques used in the dynamic systems modelling. Assume 

that ρ depends on a time-like variable t . Let us consider the following differential equation to determine density in i th finite 

element, ρ i , when solving the problem stated in (1) –(6) [19] : 

ρ́i = λ

(
pC i (ρi ) 

ρi 

− μV i 

)
, C i (ρi ) = 

∫ 
�i 

∇T · (k i (ρ) ∇T ) d� (7) 

where dot above denotes the derivative with respect to t , �i is a domain of i th finite element, V i is a volume of i th element, 

λ is a physical dimensional positive constant, μ is a positive parameter that regulates the relative importance of the cost 

function (4) and mass constraint (5) . This equation can be obtained by applying methods of the projected dynamical systems 

[19,33] or bone remodelling methods [34,36] . It should be noted that term 

pC i (ρi ) 
ρi 

is the derivative of the compliance with 
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