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a b s t r a c t

This paper proposes a simplified reproducing kernel method to solve the linear Volterra
integral equations with variable coefficients. The main idea of the method is to establish
a reproducing kernel direct space that can be used in Volterra integral equations. And in
the first time, this paper analyzes the convergence order and stability of the approximate
solution. Then the uniform convergence of the numerical solution is proved, and the time
consuming Schmidt orthogonalization process is avoided. The proposed method is proved
to be stable and is not less than the second order convergence. The algorithm is proved to
be feasible and stable through some numerical examples.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The integral equations is an important branch of modern mathematics, many mathematical and physical problems need
to be solved by integral equations or differential equations. The type of integral equations depending on the structure of
integrals, for example, Fredholm integral equations, Volterra integral equations and Fredholm–Volterra integral equations.
The model of Fredholm and Volterra integro-differential equations extends to every field of application, such as wind
ripple in the desert, nano-hydrodynamics and drop wise condensation [1–5]. However, it is usually difficult to get an
analytic solution of the integral and integro-differential equations, therefore, many researchers have extensively studied
the numerical methods of Volterra integral equations in recent years [6–10]. F. Mirzaee [11] used the rationalized Haar
functions to solve the system of linear Volterra integral equations. L.H. Yang [12,13] provide a reproducing kernel method
for solving the system of the Volterra integral equations. F. Mirzaee [14] solved the systems of linear Volterra integral
equations based on the Euler matrix method. A collocation approach have been used for solving linear Volterra integral
equations [15]. An expansion method is used for treatment of second kind Volterra integral equations system [16].
E. Hesameddini [17] solved the Volterra–Fredholm integral equations based on Bernstein polynomials and hybrid Bernstein
Block-Pulse functions. F. Mirzaee [18] contributes an efficient numerical approach to solve the systems of high-order linear
Volterra integro-differential equations with variable coefficients under the mixed conditions.

In this paper, by simplified reproducing kernel method, we get an approximate solution for linear Volterra integral
equations with variable coefficients as follows:
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a11(x)f1(x) − b11

∫ x

0
k11(x, t)f1(t)dt + a12(x)f2(x) − b12

∫ x

0
k12(x, t)f2(t)dt = u1(x)

a21(x)f1(x) − b21

∫ x

0
k21(x, t)f1(t)dt + a22(x)f2(x) − b22

∫ x

0
k22(x, t)f2(t)dt = u2(x)

(1)

where aij(x), i, j = 1, 2 are arbitrary smooth functions defined on the interval [0,1], bij, i, j = 1, 2 are given constants.
As known to all, the application of reproducing kernel method for integral and differential equations has been developed

by many researchers because this method is easy to obtain the exact solution with the series form and to get approximate
solution with higher precision [19–22]. Moreover, more and more scholars use the reproducing kernel method to solve the
problem of integral–differential equations [12,13]. The traditional reproducing kernel method is very complicated because
it contains Schmidt orthogonalization process. The simplified regenerative kernel method proposed in this paper avoids
Schmidt’s orthogonalization process and eliminates need to calculate individual reproducing kernel functions, whichmakes
it more widely applicable.

The aim of this paper is to derive the numerical solutions of Eqs. (1) in Section 1. In Section 2, we introduce the
reproducing kernel direct space for solving problems. Some primary results are analyzed in Section 3. The numerical
algorithm of approximate solution is presented in Section 4. Section 5 describes the convergence order and stability analysis
of approximate solution. In Section 6, the presented algorithms are applied to some numerical experiments. Then we end
with some conclusions in Section 7.

2. The reproducing kernel direct space

In this section, the reproducing kernel space is given, and the reproducing kernel direct space is defined that we need.
We assume that Eqs. (1) have the unique solution.

• Reproducing kernel spaceW2[0, 1] is defined as

W2[0, 1] = {u(x)|u′ is an absolutely continuous real value function,u′′
∈ L2[0, 1]} [20]. The inner product and norm are

given by Ref. [20].

• Reproducing kernel spaceW1[0, 1] is defined as

W1[0, 1] = {u(x)|u is an absolutely continuous real value function,u′
∈ L2[0, 1]} [20]. The inner product and norm are

given by Ref. [20].
The reproducing kernel spaces areW2 andW1 with reproducing kernel Rt (x) and rt (x), respectively.
In this paper, consider that the exact solution of Eqs. (1) is a function vector, so, we structure a reproducing kernel direct

space, introduce product and norm.

Definition 2.1. The linear space W(2,2) is defined as

W(2,2)[0, 1] = W2[0, 1] ⊕ W2[0, 1] = {F(x) = (f1(x), f2(x))T |f1(x), f2(x) ∈ W2[0, 1]}.

The inner product and norm are defined by

⟨F(x),G(x)⟩W(2,2) = ⟨f1(x), g1(x)⟩W2 + ⟨f2(x), g2(x)⟩W2 (2)

∥F(x)∥2
W(2,2)

= ∥f1(x)∥2
W2

+ ∥f2(x)∥2
W2

Theorem 2.1. The space W(2,2)[0, 1] is a Hilbert space.

Proof. Suppose that {Fn(x)}∞n=1 is a Cauchy sequence inW(2,2)[0, 1], however,

Fn(x) = (f1,n(x), f2,n(x))T , n = 1, 2, . . .

so, {f1,n(x)}∞n=1 and {f2,n(x)}∞n=1 are Cauchy sequences inW2, respectively.
Notice thatW2 is a reproducing kernel space, so, there are two functions g1(x), g2(x) ∈ W2, make

∥f1,n(x) − g1(x)∥2
W2

→ 0, ∥f2,n(x) − g2(x)∥2
W2

→ 0.

Let

G(x) = (g1(x), g2(x))T .

By Definition 2.1, G(x) ∈ W(2,2)[0, 1], and

∥Fn(x) − G(x)∥2
W(2,2)

= ∥f1,n(x) − g1(x)∥2
W2

+ ∥f2,n(x) − g2(x)∥2
W2

→ 0.

So, the space W(2,2)[0, 1] is a Hilbert space, we call it the reproducing kernel direct space. □
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