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ALTERNATING PROJECTION METHOD FOR A CLASS OF
TENSOR EQUATIONS∗

ZHIBAO LI† , YU-HONG DAI‡ , AND HUAN GAO§

Abstract. This paper considers how to solve a class of tensor equations arising from the unified
definition of tensor-vector products. Of special interest is the order-3 tensor equation whose solutions
are the intersection of a group of quadrics from a geometric point of view. Inspired by the method
of alternating projections for set intersection problems, we develop a hybrid alternating projection
algorithm for solving order-3 tensor equations. The local linear convergence of the alternating pro-
jection method is established under suitable conditions. Some numerical experiments are conducted
to evaluate the effect of the proposed algorithm.
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1. Introduction. In mathematics, a tensor is usually defined as a multidimen-
sional array [22, 23, 27]. For instance, an order-1 tensor is a vector, an order-2 tensor
is a matrix, and tensors of order three or higher are called higher-order tensors. In
general, the element (i, j, k) of an order-3 tensor A is denoted by aijk, subarrays are
formed when a subset of the indices is fixed. As defined in the reference [28], fibers
are the higher-order analogue of matrix rows and columns (denoted as a:jk, ai:k and
aij: for the order-3 tensor A), slices are two-dimensional sections of a tensor (denoted
as Ai::, A:j: and A::k for the order-3 tensor A).

It is noted that the product of tensor allows the dimensions to be arbitrary, and
there are many kinds of tensor products developed for wide applications in chemomet-
rics [22, 23, 27], signal processing [13, 14, 30, 44], computer vision [21, 25, 37, 38, 43],
numerical algebra and numerical analysis [7, 12, 19, 24, 45], and other fields as ref-
erenced in the literature review [28]. Along with massive applications of the tensor
computation, different kinds of definitions on tensor product have been proposed in
recent years. One of the most popular definition is the n-mode product of a tensor
proposed by Bader and Kolda [3, 28], i.e., multiplying a tensor by a matrix (or a
vector) in mode n. The n-mode product of an order-N tensor A ∈ RI1×I2×···×IN
with a matrix B ∈ RJ×In is denoted by A ×n B ∈ RI1×···×In−1×J×In+1×···×IN , in
element-wise,

(A×n B)i1···in−1jin+1···iN =

In∑

in=1

ai1i2···iN bjin . (1.1)

Another useful kind of definition on tensor product is the generalization of matrix
product proposed by Shao [41]. For an order-N tensor A ∈ RI×I×···×I and an order-
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