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a b s t r a c t

We consider a multiscale strategy addressing the disparate scales in the Landau–Lifschitz
equations in micromagnetism. At the microscopic scale, the dynamics of magnetic mo-
ments are driven by a high frequency field. On the macroscopic scale we are interested
in simulating the dynamics of the magnetisation without fully resolving the microscopic
scales.

Themethod follows the framework of heterogeneousmultiscalemethods and it has two
main ingredients: a micro- and a macroscale model. The microscopic model is assumed to
be known exactly whereas the macromodel is incomplete as it lacks effective quantities.
The twomodels use different temporal and spatial scales and effective parameter values for
themacromodel are computed on the fly, allowing for improved efficiency over traditional
one-scale schemes.

For the analysis, we consider a single spin under a high frequency field and show that
effective quantities can be obtained accurately with step-sizes much larger than the size
of the microscopic scales required to resolve the microscopic features. Numerical results
both for a single magnetic particle as well as a chain of interacting magnetic particles are
given to validate the theory.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that we are given an ensemble of particles {i}Ni=1, each of them possessing a magnetic moment represented by
mi(t) ∈ R3, for all t ∈ [0, T ]. At a microscopic level, the dynamics of the particle i is modelled by the Landau–Lifschitz (LL)
equation, [1]:

d
dt

mi = −βmi × Hi − γmi × (mi × Hi) , i = 1, . . . ,N. (1)

The first termon the right hand side accounts for the precessionalmotion of themagnetisationmi around a fieldHi, while the
nonlinear term is responsible for damping the magnetisation towards the field Hi. In general, the effective field Hi includes
the effects of different short and long range interactions. The short range terms are due to exchange interactions, material
anisotropy, and applied external field. The exchange interaction makes the neighbouring particles be aligned with each
other. The namematerial anisotropy comes from the fact that when no external field is applied, the direction of themagnetic
moments would be aligned in certain directions in the crystal lattice. The long range terms include magnetostatic, and the
magnostrictive energies. The former accounts for the interaction of the magnetic moments over long distances, and the
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Fig. 1. (Left) A multiscale strategy based on upscaling: The macroscopic model lacks some information in the centre of the micro boxes, e.g., at (t∗, x∗).
The missing effective parameter values are then computed by carrying out local, in time and space, microscopic simulations in small boxes, e.g., Ωt∗,x∗ . The
micro problems should be synchronised with the corresponding coarse scale data and the effective quantities are computed and upscaled from the micro
to the macro level. (Right) A multiscale strategy based on domain partitioning: Different mathematical laws are valid at different regions. The macroscopic
region does not see the small scale variations in the microscopic domain. These two regions are connected by an interface. The interface acts as a transition
region and conditions are often imposed to ensure the consistency between the microscopic and the macroscopic quantities.

latter is related to the relation between the applied stress and change in the magnetisation, see [2,3] for more details. In the
presence of short range interactions, Hi is given by

Hi =

∑
j

Jijmj + Kani⟨p · mi⟩p + H̃,

where Jij is the exchange coefficient between the particles i and j, p is the material anisotropy which is the energetically
favourable direction of magnetisation, and H̃ is an external field interacting with the particles. The long range interactions
are ignored in the present study. The theoretical results in this paper will cover the contribution of the external field H̃ only,
but the method itself will be extended and tested when short range interactions are also present.

We are often interested in the dynamics of the magnetisation at scales much larger than the size of the spatial and
temporal variations at a particle level. It is, however, computationally unaffordable to solve the microscopic model over the
entire domain to simulatemacroscopic dynamics of themagnetisation. Themacroscopic quantities can be defined as e.g., local
averages, in time and space, of the magnetisations of the particles. In general, it is not possible to write explicit equations
for these local averages unless certain restrictive assumptions/approximations are made. Such an approach, however, lacks
generality as the approximation may not be valid e.g., in the vicinity of microscopic irregularities, such as defects. To treat
microscopic irregularities, it is therefore necessary to developmultiscale strategies that can iterate back and forth between an
accuratemicroscopic and a computationally efficientmacroscopicmodel. Themicroscopicmodel is expensive and, therefore,
should be used only when necessary.

Analytical approaches have been used to derive macroscopic rules from a given microscopic model, see e.g., [4,5] for
macroscopic rules describing the expected values of spinmagneticmoments at nonzero temperatures, and [2,6] for examples
of macroscopic rules at zero temperature starting from models at atomistic and electronic levels respectively. From a
numerical point of view, there are two common types of multiscale strategies to couple the disparate scales in multiscale
problems. The first approach is the domain partitioning strategy which implies an explicit interface between mathematical
laws valid at different scales. Such methods have been developed e.g., in [7–10]. An important issue that arises in a domain
partitioning strategy is the error at the interface, where two different descriptions are coupled. This issue has been addressed
in [10] by introducing a damping band near the interface so that high frequency variations of the fine scale solution are
damped out. The second approach is to use methods based on upscaling, where a macroscopic model is assumed everywhere
and the microscopic information is upscaled to the macromodel only in a small part of the domain. The upscaling may be
due to a one way information passing from the micro- to the macromodel, see e.g., [11], where macroscopic parameters are
derived from atomistic simulations. In the present paper, however, the aim is to design and analyse an upscaling algorithm,
which uses a two way coupling between the macro- and the micromodels. Such an approach is useful in situations where
the magnetic behaviour is non-uniform, so that a typical one way upscaling strategy would break down. Schematics of the
domain partitioning and upscaling approaches are given in Fig. 1.

In this article, as a first step towards designing general multiscale methods such as the upscaling strategy illustrated
in Fig. 1 (the left schematic), we propose and analyse an upscaling strategy based on heterogeneous multiscale methods
(HMM) [12], to couple disparate scales in the LL equations. The algorithm assumes a macromodel where some data in the
model are missing. These data are then computed and upscaled by carrying out simulations in localised, in time and space,
microscopic domains. The analysis part of this paper is limited to temporal upscaling only, and therefore the theoretical
setting consists of a case where the effective field H includes only the influence of a time-dependent external field H̃ and no
particle interactions are involved. Since we do not have any interaction, such as exchange, among the particles, we regard
all particles as being identical and rewrite the LL equation (1) as

d
dt

mε(t) = −βmε
× Hε

− γmε
× (mε

× Hε) . (2)
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