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h i g h l i g h t s

• Finite volume method for layered diffusion problems is developed.
• Proposed method is applicable to general boundary/interface conditions.
• Theoretical analysis (stability and convergence) of the schemes is presented.
• Finding: interface conditions can lead to more restrictive stability conditions.
• Presented numerical results confirm the theoretical analysis.
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a b s t r a c t

This paper focusses on finite volume schemes for solving multilayer diffusion problems.
We develop a finite volumemethod that addresses a deficiency of recently proposed finite
volume/difference methods, which consider only a limited number of interface conditions
and do not carry out stability or convergence analysis. Our method also retains second-
order accuracy in space while preserving the tridiagonal matrix structure of the classical
single-layer discretisation. Stability and convergence analysis of the new finite volume
method is presented for each of the three classical time discretisation methods: forward
Euler, backward Euler and Crank–Nicolson. We prove that both the backward Euler and
Crank–Nicolson schemes are always unconditionally stable. The key contribution of the
work is the presentation of a set of sufficient stability conditions for the forward Euler
scheme. Here,we find that to ensure stability of the forward Euler scheme it is not sufficient
that the time step τ satisfies the classical constraint of τ ≤ h2

i /(2Di) in each layer (whereDi
is the diffusivity and hi is the grid spacing in the ith layer) asmore restrictive conditions can
arise due to the interface conditions. The paper concludes with some numerical examples
that demonstrate application of the new finite volume method, with the results presented
in excellent agreement with the theoretical analysis.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many industrial, environmental and biological problems involve diffusion processes across layered materials. For exam-
ple, heat conduction in composites [1–3], tumour growth across the white and grey matter components of the brain [4,5],
contaminant transport across layered soils [6,7] and thermal conduction through skin layers during burning [8] all involve
multilayer diffusion processes. Additionally, layered diffusion is of interest to the applied mathematics community as it can
be thought of as a simple example of amultiscale problemwhen the number of layers is large [9,10]. These applications have
led to a recent flourish in research activity focussed on analytical and numerical methods for solving mathematical models
of multilayer diffusion [9,11–16].
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Fig. 1.1. Schematic diagram of a layered medium consisting of m layers. The diffusion coefficient Di and conductivity coefficient γi are constant in each
layer (i = 1, . . . ,m) with the contact transfer and partition coefficients between the ith and (i + 1)th layers denoted by Hi and θi respectively.

This paper focusses on the numerical solution of the multilayer diffusion problem described as follows. Consider a
diffusion process defined on an interval [l0, lm] partitioned into m distinct layers, such that l0 < l1 < . . . < lm−1 < lm,
where x = li (i = 1, . . . ,m − 1) specifies the location of the interface between the ith and (i + 1)th layers (see Fig. 1.1). The
resulting domain is denoted [l0, l1, . . . , lm−1, lm]. In this work, we define a linear diffusion equation on each layer together
with general initial and boundary conditions:

∂ui

∂t
= Di

∂2ui

∂x2
, li−1 < x < li, t > 0, (1.1)

ui(x, 0) = fi(x), (1.2)

aLu1(l0, t) − bL
∂u1

∂x
(l0, t) = cL, (1.3)

aRum(lm, t) + bR
∂um

∂x
(lm, t) = cR, (1.4)

where ui(x, t) is the solution in the ith layer at position x and time t , Di > 0 is the diffusion coefficient in the ith layer, fi(x)
specifies the initial solution in the ith layer at position x, and aL, bL, cL, aR, bR and cR are non-negative constants satisfying
aL + bL > 0 and aR + bR > 0. We neglect the special case of Neumann conditions on both boundaries (i.e. aL = aR = 0).
A unique feature of multilayer problems are the internal boundary conditions that apply at the interfaces between adjacent
layers. To close the problem (1.1)–(1.4), at each interface, x = li (i = 1, . . . ,m− 1), a pair of interface conditions is imposed,
which we assume are chosen from one of the following four types:

(i) Type I:

ui(li, t) = ui+1(li, t), (1.5)

Di
∂ui

∂x
(li, t) = Di+1

∂ui+1

∂x
(li, t). (1.6)

(ii) Type II:

Di
∂ui

∂x
(li, t) = Hi(ui+1(li, t) − ui(li, t)), (1.7)

Di+1
∂ui+1

∂x
(li, t) = Hi(ui+1(li, t) − ui(li, t)). (1.8)

(iii) Type III:

ui(li, t) = ui+1(li, t), (1.9)

γi
∂ui

∂x
(li, t) = γi+1

∂ui+1

∂x
(li, t). (1.10)

(iv) Type IV:

ui(li, t) = θiui+1(li, t), (1.11)

Di
∂ui

∂x
(li, t) = Di+1

∂ui+1

∂x
(li, t). (1.12)

Each of the four types of interface conditions (1.5)–(1.12) models different physical processes at the interfaces and as a
result finds application to different industrial, environmental and biological problems. Both Type I and Type III conditions
assume that the ith and (i + 1)th layers are in perfect contact, that is, the solution is continuous across the ith interface. The
difference is that Eq. (1.6) imposes continuity of the diffusive flux across the interface, whereas Eq. (1.10) allows for a more
general formulation, where the flux depends on an arbitrary coefficient γi > 0 instead of the diffusion coefficient Di. The
latter interface condition is useful in heat conduction problems, for example, where the diffusion coefficient is the ratio of
the thermal conductivity to the volumetric heat capacity, as Eq. (1.10) allows one to impose continuity of the heat flux as
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