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a b s t r a c t

A new method for solving stiff two-point boundary value problems is described and
compared to other known approaches using the Troesch’s problem as a test example. The
method is based on the general idea of alternate approximation of either the unknown
function or its inverse and has a genuine ‘‘immunity’’ towards numerical difficulties
invoked by the rapid variation (stiffness) of the unknown solution. A c++ implementation of
the proposed method is available at https://github.com/imathsoft/MathSoftDevelopment.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the present paper we consider a nonlinear boundary value problem (BVP)

d2u(x)
dx2

= N (u(x), x) u(x), x ∈ [a, b] , N(u, x) ∈ C2(R × [a, b]), (1)

u(a) = ua ∈ R, u(b) = ub ∈ R, (2)

which arises in many areas of physics and mathematics. Although, there is a huge variety of known methods for solving
problems of type (1), (2) (see, for example [1–4] and the references therein), almost none of them fill comfortable when the
problem turns out to be stiff.

As itwas pointed out in [5], a goodmathematical definition of the concept of stiffness does not exist. The famous definition
given in [6] says that ‘‘stiff equations are problems for which explicit methods don’t work’’, which, unfortunately, is not very
constructive. According to [7], there is at least 6 different definitions of stiff problems which possess different levels of
formality and are accepted by different schools of mathematics. The authors of [7] came up with their own definition of
‘‘stiffness’’, based on the concept of stiffness ratio, which encompasses all the known definitions.
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In the present paper we confine ourselves to consider only a subclass of stiff boundary value problems (1), (2) whose
stiffness is originated from the fact that the exact solution u(x) possesses narrow intervals of rapid variation, known as
the boundary layers. Such a behavior is typical for singularly perturbed problems, which are an important subclass of stiff
problems (see, [8–13,7]). The rapid variation is equivalent to having |u′(x)| ≫ 1 on some subset of [a, b]. And it is the
need to approximate the solution on this subset that makes the problem numerically difficult and unstable, i.e. stiff. Now
to approximate the solution on the subset of [a, b] where |u′(x)| is comparatively small is much easier from the numerical
point of view. To be more specific, let us consider a set χu ∈ [a, b] defined in the following way:

χu = {x ∈ [a, b] : |u′(x)| ≥ 1}. (3)

It is easy to see that, defined in such away, set χu consists of a finite or infinite number of distinctive closed intervals ῑi. Some
of the intervals ῑi might be those of rapid variation for the solution u(x). At the same time, by the definition of χu (3), solution
u(x) is strictly monotonic on each interval ῑi, which means that we can consider the inverse function xῑi (·) = u−1(·) defined
on the closed interval u(ῑi) ∈ u([a, b]). There are two remarkable things about the function xῑi (·):

1. |x′

ῑi
(u)| ≤ 1, ∀u ∈ u(ῑi),whichmeans that the initial BVP stated in terms of ‘‘inverse solution’’ x′

ῑi
(u) is not stiff on u(ῑi);

2. having function xῑi (u) approximated on a discrete set of points from u(ῑi) we automatically get function u(x)
approximated on some discrete set of points from ῑi.

The two observations give us the key insight on how to deal with the subclass of stiff problems defined above. It is the
divide and conquer principle: on the subintervals where solution u(x) is well behaved (showing rather moderate variation)
we solve the given problem (1), (2), whereas on the subintervals ῑi,where u(x) varies rapidly (and the initial problem is stiff),
we solve the corresponding problem for the inverse solution xῑi (u). Of course, this becomes feasible from the practical point
of view only if there is a finite number of subintervals ῑi, which becomes our assumption from now on.

Speaking about the known methods for solving BVPs, it is impossible not to mention the simple shooting method (SSM)
and themultiple shooting method (MSM) [14, Section 7.3] which are two themost simple and reliable techniques to deal with
boundary value problems of type (1), (2). By calling them techniques and not just methods we would like to emphasize that
the basic idea behind them is very broad and can be used in many different modifications, which, in turn, might be called
methods. Since definitions of both SSM and MSM essentially relay on using methods for solving initial value problems (IVP),
one of theways to come upwith a newmodification consists in using a different IVP solver. Belowwe adapt (modify) the SSM
andMSMby using a specific approach for numerical solution of IVP’swhich is based on the idea of alternate approximation of
either straight u(x) or inverse x(u) solutions of Eq. (1) and has a genuine ‘‘immunity’’ towards numerical difficulties invoked
by the rapid variation (stiffness) of the solution in question.

The main focus of the paper is not only to present a general idea about how to treat some subclass of stiff boundary value
problems in an efficient way, but also to describe and examine a possible particular implementation of the idea, hereinafter
referred to as Straight-Inverse method (or, simply, SI-method). With this in mind, we actively exploit one of the most famous
examples of stiff BVPs, known as the Troesch’s problem:

d2u(x)
dx2

= λ sinh (λu(x)) , x ∈ [0, 1] (4)

u(0) = 0, u(1) = 1, (5)

which is a partial case of problem (1), (2) with N(u(x), x) ≡ λ sinh (λu(x)) /u(x), a = ua = 0, b = ub = 1. In addition to its
application in physics of plasma, the Troesch’s problem, has drawna lot of interest to itself as a test case formethods of solving
unstable two-point boundary value problems because of its difficulties [15]. A vast amount of numerical data available for the
problem (see [15,7,16–19] and the references therein) allowed us to perform broad analysis of the SI-method and compare
it to many other methods for solving two-point BVPs. The comparison confirms excellent characteristics of the method in
terms of both accuracy (numerical stability) and performance. Results of multiple numerical tests with problems other than
(4), (5) (among them those with N ′

x(u, x) ̸≡ 0 and with the solution u(x) oscillating on [a, b]), which are not included in
the present paper, show remarkable adaptivity potential of the SI-method, and do support the conclusions obtained on the
Troesch’s test problem.

At this point, we would like to notice that, in general case, there is no guarantee that the BVP (1), (2) is solvable, i.e. has
a solution. From [20, Theorem 7.25] it follows, however, that, under the conditions imposed on the nonlinearity of Eq. (1),
the problem can have at most one solution, that is, the uniqueness is granted. The question of existence is kept out of the
scope of the current paper, as well as the error analysis for the SI-method applied to BVP (1), (2). We leave both issues for the
future publications. The main theoretical result of the paper, Theorems 1, 2, deals with the SI-method for Eq. (1) subjected
to an initial condition, and provides a priori error estimates for the case.

The paper is organized as follows. In the beginning of Section 2 we introduce the SI-method for solving initial value
problems associated with Eq. (1); the rest part of the section is devoted to a thorough investigation of the method’s
approximation properties, which are formulated as Theorems 1 and 2. The SI-method for solving boundary value problem
(1) (2) is the main focus of Section 3, where we describe a single and multiple shooting versions of the method. We apply
the SI-method to the Troesch’s equation subjected to both initial and boundary value conditions and discuss the results in
Section 4. Section 5 contains conclusions.
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