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ARTICLE INFO ABSTRACT

Article history: We show how simple kinks and jumps of otherwise smooth integrands over R? can be
Received 17 August 2017 dealt with by a preliminary integration with respect to a single well chosen variable.
Received in revised form 26 February 2018 It is assumed that this preintegration, or conditional sampling, can be carried out with
negligible error, which is the case in particular for option pricing problems. It is proven

Ilf[gl:vgﬁ.ensional integration that undgr apgropriate conditions the preintggrated fuqctioq ofd - 1 variables belpngs to
Smoothing appropriate mixed Sobolev spaces, so potentially allowing high efficiency of Quasi Monte
Preintegration Carlo and Sparse Grid Methods applied to the preintegrated problem. The efficiency of
ANOVA decomposition applying Quasi Monte Carlo to the preintegrated function are demonstrated on a digital
Quasi Monte Carlo Asian option using the Principal Component Analysis factorization of the covariance matrix.
Conditional sampling © 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the present paper we analyze a natural method for numerical integration over RY, where d may be large, in the presence
of “kinks” (i.e. discontinuities in the gradients) or “jumps” (i.e. discontinuities in the function). In this method one of the
variables is integrated out in a “preintegration” step, with the aim of creating a smooth integrand over R4~

Integrands with kinks and jumps arise in option pricing, because an option is normally considered worthless if the value
falls below a predetermined strike price. In the case of a continuous payoff function this introduces a kink, while in the case
of a binary or other digital option it introduces a jump.

A simple strategy is to ignore the kinks and jumps, and apply directly a method for integration over R?. While there
has been very significant recent progress in Quasi Monte Carlo (QMC) methods [1] and Sparse Grid (SG) methods [2] for high
dimensional integration when the integrand is somewhat smooth, there has been little progress in understanding their
performance when the integrand has kinks or jumps.

The performance of QMC and SG methods is degraded in the presence of kinks and jumps, but perhaps not as much as
might have been expected, given that in both cases the standard error analysis fails in general for kinks and jumps: the
standard assumption in both cases is that the integrand has mixed first partial derivatives for all variables, or at least that
it has bounded Hardy and Krause variation over the unit cube [0, 1]¢, whereas even a straight non-aligned kink (one that
is not orthogonal to one of the axes) lacks mixed first partial derivatives even for d = 2, and generally exhibits unbounded
Hardy and Krause variation on [0, 1]¢ for d > 3 [3].
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A possible path towards understanding the performance of QMC and SG methods in the presence of kinks and jumps
was developed in [4]. That paper studied the terms of the “ANOVA decomposition” of functions with kinks defined on d-
dimensional Euclidean space R?, and showed that under suitable circumstances all but one of the 2¢ ANOVA terms can
be smooth, with the single exception of the highest order ANOVA term, the one depending on all d of the variables. If the
“effective dimension” of the function is small, as is commonly thought to be the case in applications, then that single non-
smooth term can be expected to make a very small contribution to both supremum and £, norms. In a subsequent paper [5]
the same authors showed, by strengthening the theorems and correcting a mis-statement in [4], that the smoothing of all but
the highest order ANOVA term is a reality for the case of an arithmetic Asian option with the Brownian bridge construction.

More precisely, the papers [4] and [5] showed, for a function of the form f(x) = max(¢(x), 0) with ¢ smooth (so that f
generically has a kink along the manifold ¢(x) = 0), that if the d-dimensional function ¢ has a positive partial derivative
with respect to x; for somej € {1, ..., d}, and if certain growth conditions at infinity are satisfied, then all the ANOVA terms
of f that do not depend on the variable x; are smooth. The underlying reason, as explained in [4], is that integration of f with
respect to x;, under the stated conditions, results in a (d — 1)-dimensional function that no longer has a kink, and indeed is
as often differentiable as the function ¢.

Going beyond kinks, we prove in this paper that Theorem 1 in [5] can be extended from kinks to jumps—thus jumps
are smoothed under almost the same conditions as kinks. The smoothing occurs even in situations (for example in option
pricing) where the location of the kink or jump treated as a function of the other d — 1 variables moves off to infinity for
some values of the other variables.

In this paper we pay particular attention to proving that the presmoothed integrand belongs to an appropriate mixed-
derivative function space.

The preintegration method studied in the present paper has appeared as a practical tool under other names in many other
papers, including those related to “conditional sampling” (see [6]; the paragraph leading up to and including Lemma 7.2
in [7]; the remark at the end of Section 3 in [8]), and other root-finding strategies for identifying where the payoff is positive
(see [9,10]), as well as those under the name “smoothing” (see [11,12]). In contrast to the cited papers, the emphasis in this
paper is on rigorous analysis. Also, we here prefer the description “preintegration” because to us “conditional sampling”
suggests a probabilistic setting, which is not necessarily relevant here.

Even for the classical Monte Carlo (MC) method the preintegration step can be useful: to the extent that the preintegration
can be considered exact, there is a reduction in the variance of the integrand, by the sum of the variances of all ANOVA terms
that involve the preintegration variable x; (since the ANOVA terms are eliminated because their exact integrals with respect
to x; are all zero). In our numerical experiments that reduction proves to be quite significant.

The problem class and the method are stated in Section 2. Section 3 gives numerical examples in the context of an option
pricing problem with 256 time steps, treated as a problem of integration in 256 dimensions. Section 4 briefly discusses
the variance reduction by preintegration for £, functions. Section 5 focuses on the smoothing effect of preintegration. It
gives mathematical background on needed function spaces and states two new smoothing theorems, extended here in a
non-trivial way from [5, Theorem 1]. Section 6 applies our theoretical results to the option pricing example. Technical proofs
are given in Section 7.

2. The problem and the method

The problem is the approximate evaluation of

lf = /df(x>pd(x)dx=/ / Fts 2 xa) pa(®) dx -+ - i, (1)
R —00 —00

with
d
pa(®) = [ ] pxe).
k=1

where p is a continuous and strictly positive probability density function on R with some smoothness, and f is a real-valued
function integrable with respect to pg.
To allow for both kinks and jumps we assume that the integrand is of the form

f(x) = 6(x)ind(¢(x)), (2)

where 6 and ¢ are somewhat smooth functions, and ind(-) is the indicator function which gives the value 1 if the input is
positive and 0 otherwise. When 8 = ¢ we have f(x) = max(¢(x), 0) and thus we have the familiar kink seen in option pricing
through the occurrence of a strike price. When 0 and ¢ are different (for example, when 6(x) = 1) we have a structure that
includes binary digital options.

Our key assumption on ¢(x) is that it has a positive partial derivative (and so is an increasing function) with respect to

some variable x;, that is, we assume that for somej € {1, ..., d} we have
d
i’(x) >0 forall xeR% (3)
8Xj

In other words ¢ is monotone with respect to x;.
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