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a b s t r a c t

Weuse one-step conditional riskmappings to formulate a risk averse version of a total cost
problem on a controlled Markov process in discrete time infinite horizon. The nonnegative
one step costs are assumed to be lower semi-continuous but not necessarily bounded. We
derive the conditions for the existence of the optimal strategies and solve the problem ex-
plicitly by giving the robust dynamic programming equations under very mild conditions.
We further give an ϵ-optimal approximation to the solution and illustrate our algorithm in
two examples of optimal investment and LQ regulator problems.
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1. Introduction

Controlled Markov decision processes have been an active research area in sequential decision making problems in
operations research and in mathematical finance. We refer the reader to [1–3] for an extensive treatment on theoretical
background. Classically, the evaluation operator has been the expectation operator, and the optimal control problem is to
be solved via Bellman’s dynamic programming [4]. This approach and the corresponding problems continue to be an active
research area in various scenarios (see e.g. the recent works [5–7] and the references therein)

On the other hand, expected values are not appropriate tomeasure the performance of the agent. Hence, expected criteria
with utility functions have been extensively used in the literature (see e.g. [8,9] and the references therein). Other than the
evaluation of the performance via utility functions, to put risk aversion into an axiomatic framework, coherent riskmeasures
have been introduced in the seminal paper [10]. [11] has removed the positive homogeneity assumption of a coherent risk
measure and named it as a convex risk measure (see [12] for an extensive treatment on this subject).

However, this kind of operator has brought up another difficulty. Deriving dynamic programming equations with these
operators in multistage optimization problems is challenging or impossible in many optimization problems. The reason for
it is that the Bellman’s optimality principle is not necessarily true using this type of operators. That is to say, the optimization
problems are not time-consistent. Namely, a multistage stochastic decision problem is time-consistent, if resolving the
problem at later stages (i.e., after observing some random outcomes), the original solutions remain optimal for the later
stages. We refer the reader to [13–17] for further elaboration and examples on this type of inconsistency. Hence, optimal
control problems on multi-period setting using risk measures on bounded and unbounded costs are not vast, but still, some
works in this direction are [18–21].

To overcome this deficit, dynamic extensions of convex/coherent risk measures so called conditional risk measures are
introduced in [22] and studied extensively in [23]. In [24], so calledMarkov riskmeasures are introduced and an optimization
problem is solved in a controlled Markov decision framework both in finite and discounted infinite horizon, where the cost
functions are assumed to be bounded. This idea is extended to transient models in [25,26] and to unbounded costs with
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w-weighted bounds in [27–29] and to so called process-based measures in [30] and to partially observable Markov chain
frameworks in [31].

In this paper, we derive robust dynamic programming equations in discrete time on infinite horizon using one step
conditional risk mappings that are dynamic analogues of coherent risk measures. We assume that our one step costs
are nonnegative, but may well be unbounded from above. We show the existence of an optimal policy via dynamic
programming under very mild assumptions. Since our methodology is based on dynamic programming, our optimal policy
is by construction time consistent. We further give a recipe to construct an ϵ-optimal policy for the infinite horizon problem
and illustrate our theory in two examples of optimal investment and LQ regulator control problem, respectively. To the best
of our knowledge, this is the first work solving the optimal control problem in infinite horizonwith theminimal assumptions
stated in our model.

The rest of the paper is as follows. In Section 2, we briefly review the theoretical background on coherent risk measures
and their dynamic analogues in multistage setting, and further describe the framework for the controlled Markov chain that
we will work on. In Section 3, we state our main result on the existence of the optimal policy and the existence of optimality
equations. In Section 4, we prove our main theorem and present an ϵ algorithm to our control problem. In Section 5, we
illustrate our results with two examples, one on an optimal investment problem, and the other on an LQ regulator control
problem.

2. Theoretical background

In this section, we recall the necessary background on static coherent risk measures, and then we extend this kind of
operators to the dynamic setting in controlled Markov chain framework in discrete time.

2.1. Coherent risk measures

Consider an atomless probability space (Ω,F,P) and the space Z := L1(Ω,F,P) of measurable functions Z : Ω → R
(random variables) having finite first order moment, i.e. EP

[|Z |] < ∞, where EP
[·] stands for the expectation with respect

to the probability measure P. A mapping ρ : Z → R is said to be a coherent risk measure, if it satisfies the following axioms

• (A1)(Convexity) ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) ∀λ ∈ (0, 1), X, Y ∈ Z .
• (A2)(Monotonicity) If X ⪯ Y , then ρ(X) ≤ ρ(Y ), for all X, Y ∈ Z .
• (A3)(Translation Invariance) ρ(c + X) = c + ρ(X), ∀c ∈ R, X ∈ Z .
• (A4)(Homogeneity) ρ(βX) = βρ(X), ∀X ∈ Z . β ≥ 0.

The notation X ⪯ Y means that X(ω) ≤ Y (ω) for P-a.s. Risk measures ρ : Z → R, which satisfy (A1)–(A3) only, are called
convex risk measures. We remark that under the fourth property (homogeneity), the first property (convexity) is equivalent
to sub-additivity. We call the risk measure ρ : Z → R law invariant, if ρ(X) = ρ(Y ), whenever X and Y have the same
distributions. We pair the space Z = L1(Ω,F,P) with Z∗

= L∞(Ω,F,P), and the corresponding scalar product

⟨ζ , Z⟩ =

∫
Ω

ζ (ω)Z(ω)dP(ω), ζ ∈ Z∗, Z ∈ Z. (2.1)

By [32], we know that real-valued law-invariant convex risk measures are continuous, hence lower semi-continuous (l.s.c.),
in the norm topology of the space L1(Ω,F,P). Hence, it follows by Fenchel–Moreau theorem that

ρ(Z) = sup
ζ∈Z∗

{⟨ζ , Z⟩ − ρ∗(ζ )}, for all Z ∈ Z, (2.2)

where ρ∗(Z) = supZ∈Z{⟨ζ , Z⟩ − ρ(Z)} is the corresponding conjugate functional (see [33]). If the risk measure ρ is convex
and positively homogeneous, hence coherent, then ρ∗ is an indicator function of a convex and closed set A ⊂ Z∗ in the
respective paired topology. The dual representation in Eq. (2.2) then takes the form

ρ(Z) = sup
ζ∈A

⟨ζ , Z⟩, Z ∈ Z, (2.3)

where the set A consists of probability density functions ζ : Ω → R, i.e. with ζ ⪰ 0 and
∫

ζdP = 1.
A fundamental example of law invariant coherent risk measures is Average- Value-at-Risk measure (also called the

Conditional-Value-at-Risk or Expected Shortfall Measure). Average-Value-at-Risk at the level of α for Z ∈ Z is defined as

AV@Rα(Z) =
1

1 − α

∫ 1

α

V@Rp(Z)dp, (2.4)

where

V@Rp(Z) = inf{z ∈ R : P(Z ≤ z) ≥ p} (2.5)
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