Accepted Manuscript

Calculating the normalized Laplacian spectrum and the number of spanning trees of linear pentagonal chains

Chunlin He, Shuchao Li, Wenjun Luo, Liqun Sun

PII:	S0377-0427(18)30322-4 DOI: Reference:
htps://doi.org/10.1016/j.cam.2018.05.045 To appear in:	Journal of Computational and Applied Mathematics
Received date:	25 December 2016
Revised date:	4 April 2018

Please cite this article as: C. He, S. Li, W. Luo, L. Sun, Calculating the normalized Laplacian spectrum and the number of spanning trees of linear pentagonal chains, Journal of Computational and Applied Mathematics (2018), https://doi.org/10.1016/j.cam.2018.05.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Calculating the normalized Laplacian spectrum and the number of spanning trees of linear pentagonal chains*

Chunlin $\mathrm{He}{ }^{a}$, Shuchao Li ${ }^{b, \dagger}$, Wenjun Luo ${ }^{c}$, Liqun Sun ${ }^{b}$
${ }^{a}$ College of Mathematics and Physics, Huanggang Normal University, Huanggang 438000, P.R. China
${ }^{b}$ Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R. China ${ }^{c}$ School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, P.R. China

Abstract

Let W_{n} be a linear pentagonal chain with $2 n$ pentagons. In this article, according to the decomposition theorem for the normalized Laplacian polynomial of W_{n}, we obtain that the normalized Laplacian spectrum of W_{n} consists of the eigenvalues of two special matrices: \mathcal{L}_{A} of order $3 n+1$ and \mathcal{L}_{S} of order $2 n+1$. Together with the relationship between the roots and coefficients of the characteristic polynomials of the above two matrices, explicit closed-form formulas for the degree-Kirchhoff index and the total number of spanning trees of W_{n} are derived, respectively. Finally, it is interesting to find that the degree-Kirchhoff index of W_{n} is approximately to one half of its Gutman index.

Keywords: Normalized Laplacian; Linear pentagonal chain; Resistance distance; Degree-Kirchhoff index; Spanning tree

AMS subject classification: 05C50

1. Introduction

Let $G=\left(V_{G}, E_{G}\right)$ be a graph with vertex set $V_{G}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set E_{G}. The set of neighbors of a vertex v in G is denoted by $N_{G}(v)$ or simply $N(v)$. Unless otherwise stated, we follow the traditional notations and terminologies (see, for instance, [2]).

The adjacency matrix $A(G)$ of G is a $\left|V_{G}\right| \times\left|V_{G}\right|$ matrix whose (i, j)-entry is equal to 1 if vertices v_{i} and v_{j} are adjacent and 0 otherwise. Let $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{\left|V_{G}\right|}\right)$ be the diagonal matrix, where d_{i} is the degree of v_{i} in G for $1 \leqslant i \leqslant\left|V_{G}\right|$. The (combinatorial) Laplacian matrix of G is defined as $L(G)=D(G)-A(G)$; see a nice survey paper [33] and two recent papers [34, 41].

Distance is an important quantity in graph theory (see [3]). On the one hand, this parameter effects the structure properties and algebraic properties of graphs; on the other hand, this parameter derives some other important distance-based parameters, such as average distance, diameter, radius, eccentricity, distance matrix, resistance distance, etc; see [18, 30, 35]. One famous distance-based parameter called the Wiener index [38], $W(G)$, was given by $W(G)=\sum_{i<j} d_{i j}$, where $d_{i j}$ is the length of a shortest path connecting vertices v_{i} and v_{j} in G. For more conclusions and applications on the Wiener index, one may be referred to [14, 15]. The Gutman index of G was defined as $\operatorname{Gut}(G)=\sum_{i<j} d_{i} d_{j} d_{i j}$ by Gutman in [19]. He also showed that when G is a tree of order n, the Wiener index and Gutman index are closely related by Gut $(G)=4 W(G)-(2 n-1)(n-1)$.

On the basis of electrical network theory, Klein and Randić [29] proposed a novel distance function, namely the resistance distance, on a graph. Let G be a connected graph and we view G as an electrical network N by considering each edge of G as a unit resistor, then the resistance distance between vertices v_{i} and v_{j}, denoted by $r_{i j}$, is defined to be the effective resistance distance between v_{i} and v_{j} as computed with Ohm's law in N. This novel parameter is in fact intrinsic to the graph and has some nice interpretations and applications in chemistry

[^0]
https://daneshyari.com/en/article/8901765

Download Persian Version:

https://daneshyari.com/article/8901765

Daneshyari.com

[^0]: *S. L. acknowledges the financial support from the National Natural Science Foundation of China (Grant Nos. 11671164, 11271149). W. L. acknowledges the financial support from the National Natural Science Foundation of China (Grant Nos. 51468021, 51768022).
 ${ }^{\dagger}$ E-mail: lscmath@mail.ccnu.edu.cn (S. Li), lwj06051979@163.com (W. Luo), 616178412@qq.com (L. Sun), 59103008@qq.com (C. He).

