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Abstract: Let Wn be a linear pentagonal chain with 2n pentagons. In this article, according to the decomposition

theorem for the normalized Laplacian polynomial of Wn, we obtain that the normalized Laplacian spectrum of

Wn consists of the eigenvalues of two special matrices: LA of order 3n+1 and LS of order 2n+1. Together with

the relationship between the roots and coefficients of the characteristic polynomials of the above two matrices,

explicit closed-form formulas for the degree-Kirchhoff index and the total number of spanning trees of Wn are

derived, respectively. Finally, it is interesting to find that the degree-Kirchhoff index of Wn is approximately to

one half of its Gutman index.
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1. Introduction

Let G = (VG, EG) be a graph with vertex set VG = {v1, v2, . . . , vn} and edge set EG. The set of neighbors of

a vertex v in G is denoted by NG(v) or simply N(v). Unless otherwise stated, we follow the traditional notations

and terminologies (see, for instance, [2]).

The adjacency matrix A(G) of G is a |VG| × |VG| matrix whose (i, j)-entry is equal to 1 if vertices vi and vj

are adjacent and 0 otherwise. Let D(G) = diag(d1, d2, . . . , d|VG|) be the diagonal matrix, where di is the degree

of vi in G for 1 6 i 6 |VG|. The (combinatorial) Laplacian matrix of G is defined as L(G) = D(G)−A(G); see a

nice survey paper [33] and two recent papers [34, 41].

Distance is an important quantity in graph theory (see [3]). On the one hand, this parameter effects the

structure properties and algebraic properties of graphs; on the other hand, this parameter derives some other

important distance-based parameters, such as average distance, diameter, radius, eccentricity, distance matrix,

resistance distance, etc; see [18, 30, 35]. One famous distance-based parameter called the Wiener index [38],

W (G), was given by W (G) =
∑

i<j dij , where dij is the length of a shortest path connecting vertices vi and vj

in G. For more conclusions and applications on the Wiener index, one may be referred to [14, 15]. The Gutman

index of G was defined as Gut(G) =
∑

i<j didjdij by Gutman in [19]. He also showed that when G is a tree of

order n, the Wiener index and Gutman index are closely related by Gut(G) = 4W (G)− (2n− 1)(n− 1).

On the basis of electrical network theory, Klein and Randić [29] proposed a novel distance function, namely

the resistance distance, on a graph. Let G be a connected graph and we view G as an electrical network N by

considering each edge of G as a unit resistor, then the resistance distance between vertices vi and vj , denoted by

rij , is defined to be the effective resistance distance between vi and vj as computed with Ohm’s law in N . This

novel parameter is in fact intrinsic to the graph and has some nice interpretations and applications in chemistry
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