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a b s t r a c t

In this paper, we propose an efficient divide-and-conquer (DC) algorithm for symmetric
tridiagonal matrices based on ScaLAPACK and the hierarchically semiseparable (HSS)
matrices. HSS is an important type of rank-structured matrices. The most computationally
intensive part of the DC algorithm is computing the eigenvectors via matrix–matrix
multiplications (MMM). In our parallel hybrid DC (PHDC) algorithm, MMM is accelerated
by using HSSmatrix techniques when the intermediate matrix is large. All the HSS compu-
tations are performed via the package STRUMPACK. PHDC has been tested by using many
different matrices. Compared with the DC implementation in MKL, PHDC can be faster for
some matrices with few deflations when using hundreds of processes. However, the gains
decrease as the number of processes increases. The comparisons of PHDC with ELPA (the
Eigenvalue soLvers for Petascale Applications library) are similar. PHDC is usually slower
than MKL and ELPA when using 300 or more processes on the Tianhe-2 supercomputer.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Symmetric tridiagonal eigenvalue problems are usually solved by the divide and conquer (DC) algorithm both on shared
memory multicore platforms and parallel distributed memory machines. The DC algorithm is fast and stable, and well-
studied in numerous Refs. [1–6]. It is now the default method in LAPACK [7] and ScaLAPACK [8] when the eigenvectors of a
symmetric tridiagonal matrix are required.

Recently, the authors [9] usedhierarchically semiseparable (HSS)matrices [10] to accelerate the tridiagonalDC in LAPACK,
and obtained about 6x speedups in comparison with the LAPACK version for some large matrices on a shared memory
multicore platform. The bidiagonal and banded DC algorithms for the SVD problem are accelerated similarly [11,12]. The
main point is that some intermediate eigenvector matrices are rank-structured matrices [10,13]. HSS representations are
used to approximate them, and fast HSS algorithms are used to update the eigenvectors. HSS is an important type of
rank-structuredmatrices; others includeH-matrix [13],H2-matrix [14], quasiseparable [15] and sequentially semiseparable
(SSS) [16,17]. In this paper, we extend the techniques used in [11,9] to the distributed memory environment, in order to
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accelerate the tridiagonal DC algorithm in ScaLAPACK [8]. To integrate HSS algorithms into ScaLAPACK routines, an efficient
distributed HSS construction routine and an HSS matrix multiplication routine are required. In our experiments, we use
the routines in STRUMPACK (STRUctured Matrices PACKage) package [18], which is designed for computations with both
sparse and dense structured matrices. STRUMPACK has two main components: a dense matrix computation package and a
sparse direct solver and preconditioner. In this work we only use its dense matrix operation part.1 It is written in C++ and
uses MPI for distributed-memory parallelism, and it implements a parallel HSS construction algorithm with randomized
sampling [19,20]. Note that some implementations are available for sequential HSS algorithms [21,22] or parallel HSS
algorithms on shared memory platforms such as HSSPACK [12].2 However, STRUMPACK is the only one that provides
distributed parallel HSS algorithms. More details about it and HSS matrices will be introduced in Section 2.

The ScaLAPACK routine implements the rank-one update version of Cuppen’s DC algorithm [1]. We briefly introduce the
main processes. Assume that T is a symmetric tridiagonal matrix,

T =

⎛⎜⎜⎜⎜⎝
a1 b1

b1
. . .

. . .

. . . aN−1 bN−1
bN−1 aN

⎞⎟⎟⎟⎟⎠ . (1)

Cuppen introduced the decomposition

T =

(
T1

T2

)
+ bkvvT , (2)

where T1 ∈ Rk×k and v = [0, . . . , 0, 1, 1, 0, . . . , 0]T with ones at the kth and (k + 1)th entries. Let T1 = Q1D1Q T
1 be

T2 = Q2D2Q T
2 be eigen decompositions, and then (1) can be written as

T = Q
(
D + bkzzT

)
Q T , (3)

where Q = diag(Q1,Q2), D = diag(D1,D2) and z = Q Tv =

(
last col. of Q T

1

first col. of Q T
2

)
.The problem is reduced to computing the spectral

decomposition of the diagonal plus rank-one

D + bkuuT
= Q̂ΛQ̂ T . (4)

By Theorem 2.1 in [1], the eigenvalues λi of matrix D + bkzzT are the root of the secular equation

f (λ) = 1 + bk
z2k

dk − λ
= 0,

where zk and dk are the kth component of z and the kth diagonal entry of D, respectively, and its corresponding eigenvector
is given by q̂i = (D − λi)−1z. Eigenvectors computed this way may loss orthogonality. To ensure orthogonality, Sorensen
and Tang [23] proposed to use extended precision. This extra precision approach was used by Gates and Arbenz [5] in their
implementation. However, the implementation in ScaLAPACK uses the Löwner theorem approach, instead of the extended
precision approach [23].

Remark 1. The extra precision approach is ‘‘embarrassingly’’ parallel with each eigenvalue and eigenvector computed
without communication, but it is not portable to every platform. The Löwner approach requires information about all the
eigenvalues, requiring a broadcast. However, the length of communication message is O(n) which is trivial compared with
the O(n2) communication of eigenvectors.

The excellent performance of the DC algorithm is partially due to deflation [2,1], which happens in two cases. If the entry zi
of z are negligible or zero, the corresponding (λi, q̂i) is already an eigenpair of T . Similarly, if two eigenvalues inD are identical
then one entry of z can be transformed to zero by applying a sequence of plane rotations. All the deflated eigenvalues would
be permuted back to D by a permutation matrix, so do the corresponding eigenvectors. Then (3) reduces to, after deflation,

T = Q (GP)
(
D̄ + bkz̄z̄T

D̄d

)
(GP)TQ T , (5)

where G is the product of all rotations, and P is a permutation matrix and D̄d are the deflated eigenvalues.
According to (4), the eigenvectors of T are computed as

U = Q (GP)
(
Q̂

Id

)
=

[(
Q1

Q2

)
GP
](

Q̂
Id

)
. (6)

1 The current version is STRUMPACK-Dense-1.1.1, which is available at http://portal.nersc.gov/project/sparse/strumpack/.
2 Some Fortran and Matlab codes are available at Jianlin Xia’s homepage, http://www.math.purdue.edu/~xiaj/, and HSSPACK is available at GitHub.
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