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a b s t r a c t

An enhanced technique for hierarchical agglomerative clustering is presented. Classical
clusterings suffer from non-uniqueness, resulting from the adopted scaling of data and
from the arbitrary choice of the function to measure the proximity between elements.
Moreover, most classical methods cannot account for the effect of measurement uncer-
tainty on initial data, when present.

To overcome these limitations, the definition of a weighted, asymmetric function is
introduced to quantify the proximity between any two elements. The data weighting
depends dynamically on the degree of advancement of the clustering procedure. The novel
proximity measure is derived from a geometric approach to the clustering, and it allows
to both disengage the result from the data scaling, and to indicate the robustness of a
clustering against the measurement uncertainty of initial data.

The method applies to both flat and hierarchical clustering, maintaining the computa-
tional cost of the classical methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

With the advancements in computer science, the study of clustering has gained increasing interest in the last decades,
due to its several technical applications, ranging from machine learning [1], to data mining [2], including a number of tools
for scientific research [3], logistics [4], and everyday life [5].

Indeed, in the study of many engineering and physical phenomena, data appear to be conditioned by several parameters.
When analytical models are not available, the correlation between multivariate data and the corresponding parameter
configurations can be usually obtained only by means of numerical simulations or experiments. Unfortunately, the nature
of this correlation may remain unknown. Moreover, it is sometimes observed that experiments performed with different
operational conditions may produce similar results. The first step to understand the data underlying structure, therefore,
may consist in determining the families of configurations which lead to comparable results.

Since the first works, e.g., [6], statistical clustering has been used to provide a classification of a set of multivariate data,
based on some similarities among the members of the same set (termed cluster). Flat clustering methods, in particular,
identify a given number of sets and assign each configuration to one of them. Algorithms for flat clustering are usually very
fast. On the contrary, the quality of the results depends in general on a-priori choices, e.g., the number of clusters: the research
of the optimal number of clusters requires additional computations. Moreover, flat clustering methods cannot distinguish
between ‘‘close’’ and ‘‘closer’’ configurations. These limitations are overcome by hierarchical clustering: the clusters are
recursively identified and partitioned into sub-cluster, each characterized by an increasing degree of similarity among the
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belonging elements. Despite the slightly larger computational cost, therefore, hierarchical clustering methods retrieve a
larger number of informations. Classical hierarchical clustering methods can be either agglomerative (or bottom-up) or
divisive (or top-down): the first ones start out with as many clusters as the number of data – i.e., all the clusters are singleton
sets – and, at each iteration, they gather them together until a single cluster is built, containing all data. On the contrary, the
second ones start out with a whole set containing all data, and recursively partition it into smaller subsets until the selected
level of detail. For complete introductions and descriptions of statistic clustering, the reader is addressed to [7,8].

Despite the better insight in the data structure provided, also hierarchical clustering methods suffer from some
limitations. The resulting clustering, indeed, is non-unique, as it depends on the method used to quantify the similarity
between its elements [9,10], on the treatment adopted to deal with special cases [11] and, mostly, on the data scaling
[12–14]. To overcome the latter limitation, several solutions have been proposed so far. A first attempt to produce scale-
invariant clusters [15] was based on the so-called Mahalanobis distance [16]. The latter is derived from the Euclidean
distance, but it is made scale-invariant by introducing a normalization with respect to the data covariance. However, as
pointed out by later works, the use of the variance to normalize data may result in meaningless clusters [17]. One of the
most effective technique to find robust, scale-invariant clustering is based on a geometric approach, the so-called ‘‘minimum
volume ellipsoids method’’, which allows to both disengage the results from the data scaling and to control the significance
of the results [18–20]. Unfortunately, the computational efficiency of these geometric methods is usually lower than non-
geometric ones.

To fill this gap, in this paper we introduce a novel, enhanced technique for hierarchical agglomerative clustering. The
method is based on a geometric approach and, at the same time, on the definition of a weighted asymmetric distance
function. The advantages of the adopted function are threefold: on the one hand, it allows to disengage the resulting
clustering from the data scaling. On the other hand, thanks to the definition of the distance function, it requires the same
computational effort as non-geometricmethods. Eventually, the proposed technique intrinsicallymanages themeasurement
uncertainty, if any, even if the statistical distribution of the error is unknown. Therefore, this method can be successfully
applied to both fully deterministic data and to experimental results affected by errors. When experimental results are
analyzed, indeed, the choice of a suitable, robust clustering procedure is particularly relevant. On the one hand, the numerical
values of the data, indeed, dependon arbitrary choices, e.g the units ofmeasurement, the use of dimensional or dimensionless
variables, the normalization of the results with respect to a reference value. An effective clustering method, therefore, must
be scale-invariant. On the second hand, experimental data are usually affected by the measurement uncertainty: for this
reason, a robust procedure should be recommended. Previousworks on the clustering of non-deterministic data often require
to know in advance the probability density function of the data [21–23], which may be unknown.

This work stems from the results of a long-term experimental campaign carried out at the ThermALab of Energy
Department of Politecnico di Milano on the enhancement of heat transfer in forced convection of air flows through
rectangular channels by means of square ribs in large variety of geometrical configurations. The Nusselt number and the
friction factor – indicators of thermal and hydraulic performances, respectively – were experimentally measured. The ribs
enhance heat transfer by periodically deflecting streamlines, interrupting boundary layer growth and destabilizing the flow.
All these effects bring about an early transition to turbulent regime or promote turbulence. Unfortunately, to force a flow
through a ribbed channel at a given Reynolds number, a larger pumping power is required, resulting in lower hydraulic
performances with respect to a smooth channel in the same conditions. For each flow Reynolds number, a large number of
rib geometries and configurations were tested, since the program was aimed at investigating the optimal rib configuration,
i.e., producing the best compromise between the heat transfer enhancement and the induced hydraulic losses. The results
showed a large dispersion of the data, and the apparent lack of an underlying criterion. For this reason, a cluster analysis was
first performed on experimental data, in order to determine a possible structure, by means of classical clustering methods.
Both plain data – i.e., on the Nusselt number and on the friction factor resulting from the experiments – and the same
data normalized with respect to the Nusselt number and on the friction factor of the reference configuration – the smooth
channel – were analyzed, in order to highlight both the absolute performances of each configurations and the difference
with respect to the reference case. Unfortunately, the results of the clustering analysis of non-normalized and of normalized
data were completely different. This fact represented an unexpected additional difficulty, since it is commonly enough to
use non-dimensional number – i.e., Reynolds and Nusselt numbers and the friction factor – in order to provide unique
correlations inmost thermo-fluid-dynamical problems. On the contrary, the obtained clusteringwas not unique, highlighting
a sensitivity problem. As observed also in other scientific researches dealingwith differentmetrics [24], it can become a hard
task to understand a prioriwhether non-normalized or normalized data should be used for the clustering.Moreover, classical
clusterings proved to be not helpful in the perspective of determining the channel performances for two additional reasons.
On the one hand, the effect of the measurement uncertainty was not known. On the other hand, classical methods forced
to attribute the same relevance to both the performance indicators, whereas it is known that, depending on the technical
applications, either the thermal or the hydraulic aspect must be privileged. To overcome these limitations, the novel method
has been devised.

The paper is structured as follows: Section 2 reports the formulation of the method. In particular, the novel function
adopted to measure the proximity between elements is defined, and its physical and geometrical interpretation is provided.
An example of clustering obtained by means of the proposed method is provided in Section 3, including a comparison with
the results of a classical clustering procedure. Conclusions and final remarks are reported in Section 4.
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