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a b s t r a c t

In this paper, we consider the normwise, mixed and componentwise condition numbers
for a linear function Lx of the solution x to the linear least squares problem with equality
constraints (LSE). The explicit expressions of the normwise, mixed and componentwise
condition numbers are derived. Also, we revisit some previous results on the condition
numbers of linear least squares problem (LS) and LSE. It is shown that some previous
explicit condition number expressions on LS and LSE can be recovered from our new
derived condition numbers’ formulas. The sharp upper bounds for the derived normwise,
mixed and componentwise condition numbers are obtained, which can be estimated
efficiently by means of the classical Hager–Higham algorithm for estimating matrix one-
norm. Moreover, the proposed condition estimation methods can be incorporated into
the generalized QR factorization method for solving LSE. The numerical examples show
that when the coefficient matrices of LSE are sparse and badly-scaled, the mixed and
componentwise condition numbers can give sharp perturbation bounds, on the other
hand normwise condition numbers can severely overestimate the exact relative errors
because normwise condition numbers ignore the data sparsity and scaling. However, from
the numerical experiments for random LSE problems, if the data is not either sparse or
badly scaled, it is more suitable to adopt the normwise condition number to measure the
conditioning of LSE since the explicit formula of the normwise condition number is more
compact.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The least squares problem with equality constraints (LSE) has the following form:

LSE : min
x∈Rn

∥Ax − b∥2 subject to Cx = d, (1.1)

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, d ∈ Rp and m + p ≥ n ≥ p. The rank conditions [1]

rank(C) = p and rank
([

A
C

])
= n (1.2)

guarantee the existence of the unique solution of LSE [1,2]

x = Kb + C†
Ad,
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where

K = (AP)†, P = In − C†C, C†
A = (In − KA) C†, (1.3)

and B† is the Moore–Penrose inverse of B [1]. Under the rank condition rank(C) = p the equality constraints Cx = d in (1.1)
are consistent, thus LSE (1.1) has solutions. The second rank condition of (1.2) guarantees the uniqueness of the solution to
(1.1). On the other hand, the augmented system also defines the unique solution x as follows:

Ax :=

⎡⎣ 0 0 C
0 Im A
C⊤ A⊤ 0

⎤⎦[λr
x

]
=

[d
b
0

]
:= b, (1.4)

where A⊤ is the transpose of A, Im denotes them×m identitymatrix, 0 is the zerosmatrix with conformal dimension, λ ∈ Rp

is a vector of Lagrange multipliers, and r is the residual vector r = b − Ax. As stated in [2,3], when the rank condition (1.2)
is satisfied, A is nonsingular and its inverse has the following expression:

A−1
=

⎡⎢⎣(AC†
A )

⊤AC†
A −(AC†

A )
⊤ (C†

A )
⊤

−AC†
A Im − (AP)K K⊤

C†
A K −

(
(AP)⊤(AP)

)†
⎤⎥⎦ . (1.5)

When C = 0 and d = 0, LSE is reduced to the classical linear least squares problem (LS) as follows

LS : min
x∈Rn

∥Ax − b∥2. (1.6)

In this case, we know that the rank condition (1.2) becomes rank(A) = n. Thus LS has the unique LS solution x = A†b =

(A⊤A)−1A⊤b.
The LSE problem has many applications such as in the analysis of large scale structures [4], and the solution of the

inequality constrained least square problem [5] etc. The algorithms and perturbation analysis of LSE can be found in several
papers [1–9] and references therein.

Perturbation theory is important in matrix computation, since they can give error bounds for the computed solution.
Especially, condition number measures the worst-case sensitivity of an input data with respect to small perturbations on
it; see the recent monograph [10] and references therein. Rice in [11] gave a general theory of condition numbers. Let
ψ : Rp

→ Rq be a mapping, where Rp and Rq are the usual p- and q-dimensional Euclidean spaces equipped with some
norms, respectively. If ψ is continuous and Fréchet differentiable in the neighborhood of u0 ∈ Rp then, according to [11],
the relative normwise condition number of ψ at u0 is given by

condψ (u0) := lim
ε→0

sup
∥∆u∥≤ε

(
∥ψ(u0 +∆u) − ψ(u0)∥

∥ψ(u0)∥
⧸

∥∆u∥
∥u0∥

)
=

∥dψ(u0)∥∥u0∥

∥ψ(u0)∥
, (1.7)

where dψ(u0) is the Fréchet derivative of ψ at u0. Condition number can tell us the loss of the precision in finite precision
computation of a problem.With the backward error of a problem, the relative error of the computed solution can be bounded
by the product of condition number and backward error.

When the data is sparse or badly-scaled, componentwise perturbation analysis [12,13] has been proposed to investigate
themixed condition numbers and componentwise condition numbers [14] of the problem inmatrix computation. Themixed
condition numbers use the componentwise error analysis for the input data,while the normwise error analysis for the output
data. On the other hand, the componentwise condition numbers use the componentwise error analysis for both input and
output data. Consequently, the perturbation bounds based on the mixed and componentwise condition numbers are more
effective and sharper than those based on the normwise condition number when the data is sparse or badly scaled because
the normwise condition number defined in (1.7) does not take account of the structure of both input and output data with
respect to scaling and/or sparsity.

In some situations, the conditionings of particular components of a solution are different. Thus it is suitable to consider
the condition numbers of a linear function of the solution. These type condition numbers had been studied for the LS
problem [15,16], the weighted LS problem [17], the total least squares problems [18,19], the indefinite LS problem [20]
and the LSE problem [21], etc. In this paper, we will investigate the sensitivity of a linear function Lx of the LSE solution x
with respect to perturbations on the data A, C , b and d. First, let us introduce the following mapping

Φ : Rmn
× Rpn

× Rm
× Rp

→ Rk (1.8)

Φ(vec(A), vec(C), b, d) := L
(
Kb + C†

Ad
)
,

where vec(A) is a vector obtained by stacking the columns of a matrix A one by one (see [22] for details), and L is an
k-by-n, k ≤ n, matrix introduced for the selection of the solution components. For example, when L = In (k = n), all
the n components of the solution x are equally selected. When L = e⊤

i (k = 1), the ith row of In, then only the ith component
of the solution is selected. The matrix L is not perturbed in the text.
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