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a b s t r a c t

Hairer and Iserles (2016) presented a detailed study of skew-symmetric matrix approxi-
mation to a first derivative which is proved to be fundamental in ensuring stability of dis-
cretisation for evolutional partial differential equations with variable coefficients. An open
problem is proposed in that paper which concerns about the existence and construction
of the perturbed grid that supports high-order skew-symmetric differentiation matrix for
a given grid and only the case p = 2 for this problem have been solved. This paper is an
attempt to solve the problem for any p ⩾ 3. We focus ourselves on the symmetric grid and
prove the existence of the perturbed grid for arbitrarily high order p and give in detail the
construction of the perturbed grid. Numerical experiments are carried out to illustrate our
theory.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Stability is a necessary condition to ensure convergence of a numerical method for partial differential equations (PDEs)
of evolution. Moreover, in practice, the efficiency of the numerical method is closely related to its stability behaviour. The
analysis of numerical stability is normally based on the PDE

∂u
∂t

= Lu + f , x ∈ Ω, t > 0 (1)

with suitably smooth initial and boundary conditions. Here, u = u(x, t), Ω ⊆ Rd, L is a linear, time-independent differential
operator. Consider the discretisation of the PDE (1) with the form

un+1
N = ANun

N + fnN , (2)

where un
N = (un

N,1, u
n
N,2, . . . , u

n
N,N ) with un

N,m ≈ u(xm, n∆t), xm the grid point and ∆t > 0 the time step. AN is a finite
dimensional approximation of L on some grid. The stability of (2) means the uniformwell-posedness of the operator {AN} as
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N → ∞ in the time interval [0, T ] (see [1]), which together with consistency of (2) guarantees convergence, i.e., un
N converges

pointwise to the exact solution of (1).
If the coefficients of L are constant, several powerful techniques can be used to investigate the numerical stability of

discretisation of (1), such as Fourier transformation and the corresponding Von Neumann condition for analysing stability,
eigenvalue analysis and energy methods. For topics on this subject, we refer the reader to [1–7] and the references
therein.

Once the coefficients of L depend on spatial variable x, the analysis becomes considerably complicated. A natural idea is
to freeze the coefficients and check the stability using above-mentioned methods. However, as it turns out, the stability of
the method for frozen problem is neither sufficient nor necessary for stability in the variable coefficient case. In [8], E. Hairer
and A. Iserles showed that the skew-symmetric differentiation matrix approximation for first derivative is fundamental in
ensuring stability of discretisation for evolutional PDEs with variable coefficients (see [8], Theorem 1). A wide range of PDEs
such as Liouville equation, Convection–diffusion equation, the Fokker–Planck equation, can be discretized stably once first
space derivative are approximated by skew-symmetric matrices. However, it has been proved in [9] that the highest order a
skew-symmetric differentiation matrix could get on a uniform grid is just two. With mild perturbation of the uniform grid,
the third and fourth-order differentiation matrices for first derivative are constructed on the modified grid. Later, this result
is extended to a more general case [8]: given arbitrary grid, not necessarily uniform, the existence of a perturbed grid which
supports skew-symmetric differentiationmatrices of a given order p is discussed. However, a constructive proof is presented
only for p = 2 based on a necessary condition given in [8] leaving p ⩾ 3 as an open problem. In [10], E. Hairer and A. Iserles
derived banded and skew-symmetric differentiation matrices of orders up to 6 based on a perturbation of a uniform grid.
In this paper, we will addresses the open problem for general symmetric grid, i.e., given arbitrary symmetric grid, we will
discuss in detail the existence and construction of symmetric perturbed grid that supports skew-symmetric differentiation
matrix approximation of arbitrary order p ⩾ 3 for first derivative.

The outline of this paper is as follows. In Section 2, we introduce some notation and revisit some existing results from [8].
In Section 3, we commence from p = 3 and prove the existence of symmetric perturbed grid that supports skew-symmetric
differentiation matrix approximation of order 3 for first derivative. Then the analysis is extended to the case of arbitrary
order p. An efficient approach to construct the perturbed grid is also provided. Numerical experiments are carried out in
Section 4. The last section is devoted to conclusions.

2. Notation and some existing results

Following [8], we assume for simplicity zero Dirichlet boundary conditions and consider the one-dimensional case. Let
Ω = [0, 1] and the grid be 0 = x0 < x1 < · · · < xN < xN+1 = 1. An N × N differentiation matrix D defined on this grid is
of order p, if

u′(xm) =

N∑
k=1

Dm,ku(xk), m = 1, 2, . . . ,N,

for every polynomial u(x) of degree p that vanishes at the endpoints.

Theorem 2.1 ([8]). Consider a differentiation matrix D of order p (p ⩾ 2) corresponding to the grid be 0 = x0 < x1 < · · · <

xN < xN+1 = 1. The necessary condition for D to be skew-symmetric is

R[1]
N = R[2]

N = · · · = R[2p−3]
N = 0 (3)

with

R[s]
m =

m∑
k=1

xsk(1 − xk)[(s + 1) − (s + 3)xk], s ∈ N. (4)

Let q ⩾ 1 and p = q + 1. The order conditions (3) are sufficient for the existence of a skew-symmetric differentiation matrix of
order p with bandwidth 2q + 1.

If the grid is symmetric, i.e., xm = 1 − xN+1−m for m = 1, . . . ,N , then R[1]
N = R[3]

N = · · · = R[2p−3]
N = 0 automatically,

therefore the order conditions (3) reduce to

R[2]
N = R[4]

N = · · · = R[2p−4]
N = 0. (5)

In practice, the nature of grid is determined by the coefficients ofL. Thatmeanswe cannot expect order conditions (3) (or
(5) if the grid is symmetric) hold in the first place. Our concern is that given a grid {xm}

N+1
m=0 to find a perturbed grid {x̃m}

N+1
m=0

as close to the given grid as possible (e.g., x̃m = xm + O(N−α) for m = 1, . . . ,N and α ⩾ 1) such that the order conditions
(3) hold. Suppose that the grid {xm}

N+1
m=0 can be expressed as the form xm = g(m/(N + 1)),m = 0, 1, . . . ,N + 1, where g

is a strictly monotonically increasing, sufficiently smooth function that maps [0, 1] to itself, the following lemma gives a
necessary condition for the existence of the perturbed grid.
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