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a b s t r a c t

Image deblurring is a fundamental problem in imaging, usually solved with computa-
tionally intensive optimization procedures. The goal of this paper is to provide new
efficient strategies to reduce computing times for simple deblurring models regularized
using orthogonal wavelet transforms. We show that the minimization can be significantly
accelerated by leveraging the fact that images and blur operators are compressible in the
sameorthogonalwavelet basis. Theproposedmethodology consists of three ingredients: (i)
a sparse approximation of the blur operator in wavelet bases, (ii) a diagonal preconditioner
and (iii) an implementation on massively parallel architectures. Combining the three
ingredients leads to acceleration factors ranging from 4 to 250 on a typical workstation.
For instance, a 1024 × 1024 image can be deblurred in 0.15 s.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Most imaging devices produce blurry images. This degradation very often prevents the correct interpretation of image
contents and sometimes ruins expensive experiments. One of the most advertised examples of that type is Hubble space
telescope,1 which was discovered to suffer from severe optical aberrations after being launched. Such situations occur on a
daily basis in fields such as biomedical imaging, astronomy or conventional photography.

Starting from the seventies, a large number of numerical methods to deblur images were therefore developed. The
first methods were based on linear estimators such as the Wiener filter [2]. They were progressively replaced by more
complicated nonlinear methods, incorporating prior knowledge on the image contents. We refer the interested reader to
the following review papers [3–5] to get an overview of the available techniques.

Despite providing better reconstruction results, the most efficient methods are often disregarded in practice, due to their
high computational complexity, especially for large 2D or 3D images. The goal of this paper is to develop new numerical
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1 The total cost of Hubble telescope is estimated at 10 billions US Dollars [1].
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strategies that significantly reduce the computational burden of image deblurring. The proposed ideas yield a fast deblurring
method, compatible with large data and routine use. They allow handling both stationary and spatially varying blurs with an
identical complexity. The proposed algorithm does not reach the state-of-the-art in terms of image quality, because the
prior is too simple, but still performs well in short computing times. A real-time deblurring experiment is provided here
https://www.youtube.com/watch?v=oHnGNRc9Qeo&feature=youtu.be.

1.1. Image formation and image restoration models

In this paper, we assume that the observed image u0 reads:

u0 = Hu + b, (1)

where u ∈ RN is the clean image we wish to recover, b ∼ N (0, σ 2IN ) is a white Gaussian noise of standard deviation σ and
H ∈ RN×N is a known blurring operator. Loosely speaking, a blurring operator replaces the value of a pixel by a mean of its
neighbors. A precise definition will be given in Section 4.

Let Ψ ∈ RN×N denote an orthogonal wavelet transform and let A = HΨ . A standard variational formulation to restore u
consists of solving:

min
x∈RN

E(x) = F (x) + G(x). (2)

In this equation, F (x) is a quadratic data fidelity term defined by

F (x) =
1
2
∥Ax − u0∥

2
2. (3)

The regularization term G(x) is defined by:

G(x) = ∥x∥1,w =

N∑
i=1

w[i]|x[i]|. (4)

The vector of weights w ∈ RN
+
is a regularization parameter that may vary across sub-bands of the wavelet transform. The

weighted ℓ1-norm is well known to promote sparse vectors. This is usually advantageous since images are compressible in
the wavelet domain. Overall, problem (2) consists of finding an imageΨ x consistent with the observed data u0 with a sparse
representation x in the wavelet domain.

Many groups worldwide have proposed minimizing similar cost functions in the literature, see e.g. [6–9]. The current
trend is to use frames Ψ such as the undecimated wavelet transforms or learned transforms instead of orthogonal
transforms [10–13]. This usually allows reducing reconstruction artifacts. We focus here on the case where Ψ is orthogonal.
This property will help designing much faster algorithms traded for some image quality.

1.2. Standard optimization algorithms

A lot of algorithms based on proximity operators were designed in the last decade to solve convex problems of type
(2). We refer the reader to the review papers [14,15] to get an overview of the available techniques. A typical method is the
accelerated proximal gradient descent, also known as FISTA (Fast Iterative Soft Thresholding Algorithm) [16]. By letting ∥A∥2
denote the largest singular value of A, it takes the form described in Algorithm 1. This method got very popular lately due to
its ease of implementation and relatively fast convergence.

Algorithm 1 Accelerated proximal gradient descent
1: input: Initial guess x(0) = y(1), τ = 1/∥A∥

2
2 and Nit .

2: for k = 1 to Nit do
3: Compute ∇F (y(k)) = A∗(Ay(k) − u0). ▷ 99.35′′

4: x(k) = ProxτG
(
y(k) − τ∇F (y(k))

)
. ▷ 2.7′′

5: y(k+1)
= x(k) +

k−1
k+2 (x

(k)
− x(k−1)). ▷ 1.1′′

6: end for

Let us illustrate this method on a practical deconvolution experiment. We use a 1024 × 1024 image and assume that
Hu = h ⋆ u, where ⋆ denotes the discrete convolution product and h is a motion blur described in Fig. 4b. In practice, the
deblurred image stabilizes visually after 500 iterations. The computing time on a workstation with Matlab and mex-files is
around 103′′15. The result is shown in Fig. 5. Profiling the code leads to the computing times shown on the right-hand-side
of Algorithm 1. As can be seen, 96% of the computing time is spent in the gradient evaluation. This requires computing two
wavelet transforms and two fast Fourier transforms. This simple experiment reveals that two approaches can be used to
reduce computing times:
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