Accepted Manuscript

Numerical evaluation of highly oscillatory Bessel transforms

Ruyun Chen, Gang Yang

PII: S0377-0427(18)30189-4
DOI: https://doi.org/10.1016/j.cam.2018.03.026
Reference: CAM 11595
To appear in: Journal of Computational and Applied
Mathematics
Received date: 2 August 2017
Revised date: 18 December 2017

Please cite this article as: R. Chen, G. Yang, Numerical evaluation of highly oscillatory Bessel transforms, Journal of Computational and Applied Mathematics (2018), https://doi.org/10.1016/j.cam.2018.03.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Numerical evaluation of highly oscillatory Bessel transforms ${ }^{1}$

Ruyun Chen ${ }^{2} \quad$ Gang Yang ${ }^{3}$
2 School of Mathematics and Computer, Guangdong Ocean University, Zhanjiang,Guangdong524088, China
3 School of Mathematics and Statistics, Hunan University of Commerce, Changsha, Hunan410205, China

Abstract

In this paper we mainly focus on numerical evaluation of highly oscillatory Bessel transforms. Based on the multiple integral, the schemes for computing this class of the transform are presented. By means of the bounds of special functions, we give the corresponding errors of the schemes. To demonstrate the efficiency and accuracy of the proposed methods, some test examples are shown.

Keywords: Oscillatory function, Bessel transforms, Multiple integral, Numerical quadrature
MSC: 65D32, 65D30

1 Introduction

In many areas of science and technology, we often encounter the problem of numerically computing Bessel transforms

$$
\begin{equation*}
I[f]=\int_{a}^{b} f(x) J_{v}(\omega x) d x \tag{1.1}
\end{equation*}
$$

for example, in astronomy, optics, electromagnetics, seismology image processing. Here f is a sufficiently smooth real-valued function, $J_{v}(\omega x)$ is Bessel function of the first kind and of order v, $\omega \gg 1$, and $0 \leq a<b<\infty$ (see [1]-[5]). For $\omega \gg 1$, Bessel function $J_{v}(\omega x)$ slowly decays when the frequency ω increases, so that the integrand oscillates rapidly [6]-[14]. The highly oscillatory integrand makes some general numerical methods to be out of operation. Therefore, we have to resort to other high precision numerical methods to compute this class of transforms. Up to now, some special methods are obtained by integrating between zeros (see [16], pp. 118; [8], [17]) or the modified Clenshaw-Curtis method is proposed for $\int_{0}^{1} f(x) J_{v}(\omega x) d x$ [9].

The first known numerical quadrature scheme for oscillatory integrals was developed in 1928 by Louis Napoleon George Filon [18]. Filon presented a Filon method for efficiently computing the oscillatory integrals of the forms

$$
\begin{equation*}
\int_{a}^{b} f(x) \sin (\omega x) d x \text { and } \int_{0}^{\infty} \frac{f(x)}{x} \sin (\omega x) d x \tag{1.2}
\end{equation*}
$$

As originally constructed, the method consists of dividing the interval into $2 n$ panels of size h, and applying a modified Simpson's rule on each panel. In other words, the function f is interpolated at the endpoints and midpoint of each panel by a quadratic function. In each panel the integral becomes a polynomial multiplied by the oscillatory kernel $\sin (\omega x)$, which can be integrated in closed form. The infinite integral was computed using a series transformation. This method was

[^0]
https://daneshyari.com/en/article/8901876

Download Persian Version:

https://daneshyari.com/article/8901876

Daneshyari.com

[^0]: ${ }^{1}$ The work is supported by NSF of Guangdong (No. 2015A030313615), and Guangxi Colleges and Universities Key Laboratory of Symbolic Computation and Engineering Data Processing (No.FH201501)
 ${ }^{2}$ Corresponding author. Tel.: +86 7592383546
 E-mail address: csuchenruyun@aliyun.com(R. Chen), yanggang1973@163.com(G. Yang).

