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Abstract
In this paper, we consider recovery of solute concentration and dispersion flux in an inhomogeneous time frac-
tional diffusion equation. We prove that the considered problem is ill-posed, i.e. the solution does not depend
continuously on the data. In order to obtain a regularized solution, we propose a truncation regularization method.
The convergence estimates are established under some priori bound assumptions for the exact solution. We
present three numerical examples to show efficiency of the method.
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1. Introduction

The mathematical description of diffusion has a long history with many different formulations including
phenomenological models based on conservation of mass and constitutive laws, probabilistic models
based on random walks and central limit theorems, microscopic stochastic models based on Brown-
ian motion and Langevin equations and mesoscopic stochastic models based on master equations and
Fokker-Planck equations. A fundamental result common to the different approaches is that the mean
square displacement of a diffusing particle scales linearly with time. Some experimental measurements
indicates that the mean square displacement of diffusing particles scales as a fractional order power
law in time. In recent years a great deal of progress has been made in extending the different models
for diffusion to incorporate this fractional diffusion. The tools of fractional calculus have proven very
useful in these developments, linking together fractional constitutive laws, continuous time random
walks, fractional Langevin equations and fractional Brownian motions. We refer the readers to [1] for a
tutorial of standard and fractional diffusion processes. Derivation, applications and approximation of a
time-fractional nonlinear diffusion equations can be found in [2]. Fractional calculus is generalization
of the traditional calculus that leads to similar concepts and tools as standard differential calculus, but
with a much wider applicability. They appear naturally in sciences area of physics, chemical engineer-
ing, biology, signal processing, electrical, control theory, finance, population dynamics, etc; we refer
the readers to [3]-[9] and the references cited therein.

As it is known, fractional (nonlocal) diffusion equations replace the integer-order derivatives in
space and time by their fractional analogues and they are used to model anomalous diffusion, especially
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