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a b s t r a c t

We propose a numerical linear algebra based method to find the multiplication opera-
tors of the quotient ring C[x]/I associated to a zero-dimensional ideal I generated by n
C-polynomials in n variables. We assume that the polynomials are generic in the sense
that the number of solutions in Cn equals the Bézout number. The main contribution of
this paper is an automated choice of basis for C[x]/I , which is crucial for the feasibility
of normal form methods in finite precision arithmetic. This choice is based on numerical
linear algebra techniques and it depends on the given generators of I .

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following problem. Given n polynomials f1, . . . , fn ∈ k[x1, . . . , xn] with k an algebraically closed field, find
all the points x ∈ kn where they all vanish: f1(x) = · · · = fn(x) = 0. Here, we will work over the complex numbers k = C.
The ring of all polynomials in the n variables x1, . . . , xn with coefficients in C is denoted by C[x1, . . . , xn]. For short, we will
denote x = (x1, . . . , xn) and an element f ∈ C[x] can be written as

f =
∑

α∈Zn
≥0

cαxα

where we used the short notation xα
= xα1

1 · · · x
αn
n . The support S(f ) of f is defined as

S(f ) = {α ∈ Zn
≥0 : cα ̸= 0}.

A set of n polynomials {f1, . . . , fn} ⊂ C[x] defines a square ideal

I = ⟨f1, . . . , fn⟩ = {g1f1 + · · · + gnfn : g1, . . . , gn ∈ C[x]} ⊂ C[x].

The affine variety associated to I is

V(I) = {x ∈ Cn
: f (x) = 0,∀f ∈ I} = {x ∈ Cn

: f1(x) = · · · = fn(x) = 0}.

In this paper, we assume that the variety V(I) consists of finitely many points {z1, . . . , zN} ⊂ Cn. Such a variety is called
0-dimensional.

A well known result in algebraic geometry states that the quotient ring k[x1, . . . , xn]/I with I ⊂ k[x1, . . . , xn] a
0-dimensional ideal and k an algebraically closed field is isomorphic as a k-algebra to a finite dimensional k-vectorspace
V with multiplication defined by a pairwise commuting set of n square matrices over k. This set of matrices corresponds
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to a set of generators of k[x1, . . . , xn]/I and the size of each matrix is equal to the number of points in V(I) ⊂ kn, counting
multiplicities. Once the (generating) multiplication matrices are known in some basis, we can answer several questions
about the variety V(I). For example, we can retrieve the solutions of the system by computing their eigenstructure and we
can evaluate any polynomial on V(I). Our goal is to compute the multiplication matrices in a numerically stable way for
square ideals satisfying some genericity assumptions.

There are many approaches to the problem of solving systems of polynomial equations. The different methods are
often subdivided in homotopy methods, subdivision methods and algebraic methods. Homotopy continuation uses Newton
iteration to track solution paths, starting from a simple initial system and gradually transforming it into the target system.
These ideas have led to highly successful solvers [1,2]. However, performing some numerical experiments one observes
that for large systems some solutions might be lost along the way. The continuation gives up on certain paths when, for
example, they seem to be diverging to infinity or they enter an ill-conditioned region. Normal form algorithms belong to
the category of algebraic methods. The earliest versions of these algorithms use Groebner bases [3,4] and doing so they
make an implicit choice of basis for C[x]/I . It turns out that these methods are numerically unstable and infeasible for large
systems of equations (high degree, many variables). More recent algorithms are based on border bases [5–7]. Essentially,
they fix a basisO for C[x]/I and construct the multiplication matrices of the coordinate functions by calculating the normal
forms of x1 · O, . . . , xn · O with respect to O. Border bases are a generalization of Groebner bases and they can be used to
enhance the numerical stability of normal form algorithms. However, there are no algorithms that make a choice ofO based
on the conditioning of the normal form computation problem. This is mentioned as an open problem in [7]. In this paper we
present such an algorithm for generic systems that makes an automatic choice ofO, which does not necessarily correspond
to a Groebner basis, nor to a border basis. What is meant by ‘generic systems’ is explained in Section 2. The goal is to cover
the generic, dense case to illustrate the effectiveness of the idea. The connectionwith resultant algorithms for dense systems
is established. This suggests that the techniques can be generalized to sparse systems of equations. Such a generalizationwill
follow from the sparse variant of the Macaulay resultant algorithm, see for instance [8].

In the following section we discuss our genericity assumptions and some properties of the systems that satisfy them.
Section 3 briefly reviews the multiplication maps in C[x]/I and their properties. We give a short motivation in Section 4
by discussing some aspects of Macaulay’s resultant construction and border bases algorithms that are generalized in our
approach. In Section 5 we introduce Macaulay matrices. The Macaulay matrices as defined in [9,10] are referred to as dense
Macaulaymatrices here. Section 6 presents the algorithm and some connections with border bases andMacaulay resultants.
In the final section we present some numerical experiments.

2. Generic total degree systems

We say that a polynomial f ∈ C[x] \ {0} is of degree d if

max
α∈S(f )
|α| = d,

where |α| = α1+ · · ·+αn. We denote deg(f ) = d. Accordingly, we say that a square polynomial system in n variables given
by {f1, . . . , fn} is of degree (d1, . . . , dn) if deg(fi) = di, i = 1, . . ., n. A polynomial f ∈ C[x] \ {0} is called homogeneous of
degree d if |α| = d,∀α ∈ S(f ).

Consider the projective n-space

Pn
= (Cn+1

\ {0})/∼,

where (a0, . . . , an) ∼ (b0, . . . , bn) iff ai = λbi, i = 0, . . . , n, λ ∈ C \ {0}. We can interpret Pn as the union of n+ 1 copies of
Cn, each of them given by putting one of the coordinates equal to 1.Wewill also think of Pn as the union ofCn corresponding
to x0 = 1 and the set {x0 = 0}, called the hyperplane at infinity. For more on projective space, see [3]. Note that the equation
f = 0 with f ∈ C[x0, . . . , xn] is well defined over Pn if and only if f is homogeneous. Starting from a polynomial f ∈ C[x] in
n variables of degree d, we can obtain a homogeneous polynomial f h ∈ C[x0, . . . , xn], called the homogenization of f as

f h = xd0f
(
x1
x0

, . . . ,
xn
x0

)
.

The following theoremwas proved by Étienne Bézout for the intersection of algebraic plane curves in P2. The generalization
is often referred to as Bézout’s theorem.

Theorem 1 (Bézout). A system of n homogeneous equations of degree (d1, . . . , dn) in n + 1 variables with a finite number of
solutions in Pn has exactly d1 · · · dn solutions in Pn, counting multiplicities.

Proof. The theorem is a corollary of Theorem 7.7 in [11]. □

It is not difficult to show that for almost all systems with degree (d1, . . . , dn), all d1 · · · dn solutions lie in the overlapping
part of the affine charts of Pn [4]. Hence, if the n homogeneous equations in n + 1 variables of Theorem 1 are the
homogenizations of n affine equations f1 = · · · = fn = 0 in n variables, all of the d1 · · · dn solutions correspond to points in
Cn
⊂ Pn.
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