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a b s t r a c t

We develop series expansions in powers of q−1 and q−1/2 of solutions of the equation
ψ(z) = q, where ψ(z) is the Laplace exponent of a hyperexponential Lévy process. As
a direct consequence we derive analytic expressions for the prices of European call and
put options and their Greeks (Theta, Delta, and Gamma) and a full asymptotic expansion
of the short-time Black–Scholes at-the-money implied volatility. Further we demonstrate
how the speed of numerical algorithms for pricing exotic options, which are based on the
Laplace transform, may be increased.
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1. Introduction

A hyperexponential Lévy process X is one with a Lévy measure of the form

ν(dx) = I(x < 0)
N̂∑
ℓ=1

âℓρ̂ℓeρ̂ℓxdx + I(x > 0)
N∑
ℓ=1

aℓρℓe−ρℓxdx,

where the {âℓ}1≤ℓ≤N̂ and {aℓ}1≤ℓ≤N are all positive real numbers and 0 < ρ1 < ρ2 < · · · < ρN−1 < ρN and 0 < ρ̂1 < ρ̂2 <

· · · < ρ̂N−1 < ρ̂N hold. The Laplace exponent ψ(z) :=
1
t log

(
E
[
ezXt

])
has the form

ψ(z) =
σ 2z2

2
+ az + z

N∑
ℓ=1

aℓ
ρℓ − z

− z
N̂∑
ℓ=1

âℓ
ρ̂ℓ + z

, −ρ̂1 < Re(z) < ρ1, (1.1)

where a ∈ R and σ ≥ 0. When σ > 0 hyperexponential processes are also called hyperexponential diffusions or
hyperexponential jump diffusions in the literature.

Despite their apparent simplicity – they are compound Poisson processes plus a Brownian motion component when
σ > 0 – they have been studied extensively in the literature for a number of reasons. First, hyperexponential processes
are dense in the CM-class of processes, i.e. those Lévy processes with completely monotone jump densities (also known
as generalized hyperexponential processes) [1]. The CM-class includes infinite activity models like the Variance Gamma
(VG) process, the Normal Inverse Gaussian (NIG) process, and the CGMY/Kobol/Generalized Tempered Stable process, which
have become very popular in finance. Second, there are a number of fast and accurate algorithms that exploit this first
quality, i.e. methods by which a CM-class process can be approximated by a hyperexponential process arbitrarily well [2,3].
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Third, becauseψ(z) can be extended to a rational functionwith real poles onC, hyperexponential processes are ‘‘analytically
tractable’’. For example, we have analytic expressions for the Laplace transform (in t) of the distribution of Xt (see Theorem2)
and theWiener–Hopf factors [4]. For financial applications, under the assumption of an exponentialmodel for the stock price,
analytic expressions for the Laplace transform of the prices of barrier [1,5,6] and look-back [7] options, for the double Laplace
transform of the price of an Asian option [8], and for the prices of Russian options and for perpetual American strangles [4,9]
are known. If we restrictN = N̂ = 1 to get the so-called double exponential or Koumodel, we have also analytic expressions
for prices of European call and put options and European options on futures contracts [10], as well as perpetual American
options [11].

In almost all of the cases mentioned above, the formula for the derivative price, or the Laplace transformed price, is
expressed in terms of the solutions of the equation

ψ(z) = q, q > 0. (1.2)

If we exclude those cases where there are fewer than four solutions, then the solutions need to be determined numerically.
As a practical matter, finding solutions to (1.2) is a time consuming part of the algorithm for inverting the Laplace transform
to obtain option prices (Asian options, barrier options, look-back options), especially because it becomes necessary to solve
(1.2) for q ∈ C.

The main idea behind this article is straightforward: we develop convergent series in powers of q−1 (when σ = 0) and
q−1/2 (when σ > 0) of the solutions of (1.2) for q ∈ C with |q| large enough. Since the series converge quite rapidly, an
immediate consequence is that the (truncated) series may be used to speed up algorithms for determining derivative prices
based on numerical inversion of the Laplace transform.

While this is a useful result, further, interesting results follow from themain idea.We are also able to use the expansions to
develop analytic expressions for the prices European call and put options and their Greeks. This is rather rare in exponential
Lévymodels, to the best of the author’s knowledge there are only two other Lévy processes forwhich this is true: (a)Merton’s
model [12] and (b) Kou’s model [10]. The resulting expressions involve series of functions in T , the time of expiry of the
option, which when σ = 0 are, in fact, just Taylor series. In the at-the-money (ATM) case, when σ > 0, the formulas are
essentially series in powers of T 1/2; this allowsus to develop a full asymptotic expansion of the short-timeATMBlack–Scholes
implied volatility. Implied volatiles, together with short-time asymptotic expansions of call option prices, have seen a large
amount of recent interest in the financial mathematics literature owing to their application to the calibration problem (see
for example [13] and the references therein).

It should be noted that we are generalizing Kou’s results [10]. While Kou also develops analytic formulas for European
call and put option prices, his approach relies on the decomposition of sums of double exponential random variables; this
technique does not seem to have a natural extension to the general case, where the number of exponential factors in the
Lévy density exceeds two.

Our approach is therefore rather different and analytical in nature, relying on results from complex analysis and the
theory of Laplace transforms. We devote Section 2 of the article to reviewing the relevant theory and developing notation.
In Section 3 we gather some key results for hyperexponential processes and develop the series expansions of the solutions
of (1.2). Then in Section 4 we develop analytic formulas for European option prices and Greeks, derive a full asymptotic
expansion of the ATM implied volatility, and consider several numerical examples. Throughout the paper, effectiveness and
efficiency of the techniques are demonstrated with numerical examples. Software used to compute the various examples
given throughout the article can be obtained from the author’s website.

2. Tools from complex analysis

2.1. Basic notation

Assuming R > 0 and z0 ∈ Rwe define

C+
:= {z ∈ C : z ̸∈ (−∞, 0]}, CR := {z ∈ C : |z| > R}, and Hz0 := {z ∈ C : Re(z) > z0},

and using these C+

R := C+
∩ CR and H := H0. The notation Z+ refers to the non-negative integers, with the analogous

meaning for the notation Z−. We will use B to denote an open ball in C centred at 0, and B0 to denote a punctured open ball
excluding the point 0. If we want to be specific about the radius R we will write B(R) and B0(R).

The collection of solutionsw of the equationwk
= z, k ∈ N is denoted z1/km . It follows that z1/km is a multi-valued function

(see pg. 24 in [14] for a rigorous definition) taking exactly k values for all z ̸= 0. The principal branch of z1/km will be denoted
simply z1/k. As usual, the principal branch is that branch for which 11/k

= 1. Further, we define zn/km := (z1/km )n for n ∈ Z,
which is again a k-valued functionwhen k is relatively prime to n. Our primary concernwill be the case k = 2. In this scenario,
the non-principal branch can be expressed in terms of the principal branch as −z1/2; the two branches of zn/2m are then just
given by zn/2 := (z1/2)n and (−1)nzn/2. The notation log(z) always refers to the principal branch of the logarithm, i.e. that
branch for which log(1) = 0. The notation Γ (z) refers to the gamma function.
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