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h i g h l i g h t s

• An Rν-generalized solution to the Stokes problem with corner singularity is introduced.
• The weighted analogue of the LBB condition is proved.
• A new weighted finite element method is constructed.
• An approximate solution converges to an exact one with O(h) rate in W 1

2,v(Ω) seminorm.
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a b s t r a c t

In this paper we introduce the notion of Rν-generalized solution to the Stokes problem
with singularity in a non-convex polygonal domain with one reentrant corner of 3π

2 on
its boundary. The weighted analogue of the Ladyzhenskaya–Babus̆ka–Brezzi condition
is proved. A new weighted finite element method is constructed. Results of numerical
experiments have shown the efficiency of the method.
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1. Introduction

The weak solution of Maxwell equations considered in a 2D polygonal domain with reentrant corner on the boundary
does not belong to the Sobolev spaceW 1

2 (Ω). Such a problem is called a boundary value problemwith strong singularity. For
the Lamé system, for an example, in a domain with a reentrant corner it is possible to define a weak solution in the space
W 1

2 (Ω), but it does not belong to the spaceW 2
2 (Ω). Such problem is called a problem with weak singularity.

According to the principle of coordinated estimates, the approximate solution to these problems by the classical finite
differencemethods and finite element methods converge to the exact one with a rate substantially smaller than one. In [1,2]
it was proposed to define the solution of elliptic boundary value problems and Maxwell equations with strong singularity
as an Rν-generalized one. Such a new conception of solution allows to construct weighted finite element methods with
first-order convergence rate estimate of the approximate solution to the Rν-generalized one in the norms of the weighted
Sobolev spaces.
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In this paper we present our method for the Stokes problem. It is not a secret that the efficient numerical solution of
problems in fluid mechanics is of significant engineering interest. There are basically three reasons why the finite element
discretization of such problem turns out to be difficult.

Firstly, in the presence of reentrant corners in the domainwith interior angleϕ, ϕ ∈ (π, 2π ), the solution of the problem
is singular even though the input data are smooth. The two-dimensional flow of a viscous fluid near the corner was first
examined in [3]. It is well known that the generalized solution of the Stokes problem: the velocity components and pressure
in a two-dimensional domain Ω with a boundary containing a reentrant angle, does not belong to W 2

2 (Ω) and W 1
2 (Ω)

respectively (see e.g., [4]). Therefore, the approximate solution produced by standard finite element or finite difference
schemes converges to a generalized solution no faster that at an O(hα) rate in the seminorm of the space W 1

2 (Ω), where
α < 1 for the velocity components (see [5]). In this case the so-called pollution effect can be observed in standard Sobolev
and even in weighted Sobolev norms [6]. More recent results on the regularity theory and finite element approximations on
domains with reentrant corners can be found in [7–9] and the references therein. By using special methods for extracting
the singular part of the solution near corner points or applying grids refined towards the singularity point, it is possible to
construct first-order accurate finite element schemes (see e.g., [10]). Secondly, the design of inf–sup stable methods for the
velocity and pressure spaces pairs [11].

Thirdly, the spaces enforce mass conservation strongly. Satisfying this criterion leads to more physically relevant
solutions, decouples the pressure error from the velocity error, and removes possible instabilities that can arise from poor
discrete mass conservation [12]. The specific element pair to achieve pointwise mass conservation of the discrete solution
is the Scott–Vogelius element pair [13,14].

In the present paper we introduce the notion of Rν-generalized solution [15–17] of the Stokes problemwith a singularity
due to a reentrant corner of 3π

2 on its boundary. It is well known that for the well-posedness of the incompressible flow
problem, the Ladyzhenskaya–Babus̆ka–Brezzi (LBB) condition plays important role. We formulate and prove the weighted
analogue of this condition. Then,we construct theweighted finite elementmethod (see [1,2,18–20]) based on the conception
of Rν-generalized solution [15–17] and mass conservation Scott–Vogelius element pair (mesh created as a barycenter
refinement). Numerical experiments of the model problem have shown that the approximate Rν-generalized solution
converges to the exact one (velocity) with the rate O(h) in W1

2,ν(Ω) seminorm. Another advantage of this method is the
simplicity of the solution determination which is an additional benefit for the numerical experiments.

The structure of the paper is as follows. In Section 2we introduce the necessary notations and prove auxiliary statements.
In Section 3 we define the Rν-generalized solution of the Stokes problem with corner singularity, formulate and prove the
weighted analogue of the LBB condition. In Section 4 we describe the proposed weighted finite element method using
Scott–Vogelius element pair (k = 2), which is very interesting from the mass conservation point of view. In Section 5
we construct an iterative process with a block preconditioning matrix. In Section 6 we present and discuss the results of
numerical experiments. Finally, some concluding remarks are given in Section 7.

2. Notation and auxiliary statements

Let R2 denote the two-dimensional Euclidean space, x = (x1, x2) be its arbitrary element, ∥x∥ =
(
x21 + x22

)1/2 and
dx = dx1 dx2. LetΩ ⊂ R2 be a bounded non-convex polygonal domain with a boundary Γ containing a reentrant angle with
its vertex placed at the origin, and let Ω̄ be a closure ofΩ, i.e. Ω̄ = Ω∪Γ .Denote byΩ ′

δ = {x ∈ Ω̄ : ∥x∥ ≤ δ < 1, δ > 0} the
part of a δ-neighborhood of the point (0, 0) that lies in Ω̄. Define a weight function ρ(x), such that ρ(x) =

{
∥x∥, x ∈ Ω ′

δ ,

δ , x ∈ Ω̄ \Ω ′
δ .

Let L2,β (Ω) denote the weighted space of functions with bounded norm

∥v∥L2,β (Ω) =

(∫
Ω

ρ2β v2dx
)1/2

and W 1
2,β (Ω) denote the weighted space of functions with bounded norm

∥v∥W1
2,β (Ω) =

( ∑
|m|≤1

∥ρβ |Dmv|∥2
L2(Ω)

)1/2
, (1)

where Dmv =
∂ |m| v

∂x
m1
1 ∂x

m2
2
, |m| = m1 + m2,mi ≥ 0, i = 1, 2 — integer, β is nonnegative real number. Let |v|W1

2,β (Ω) be a

seminorm of a function v in the space W 1
2,β (Ω): |v|W1

2,β (Ω) ≡ ∥∇v∥L2,β (Ω) =

(∑
|m|=1∥ρ

β (x)|Dmv(x)|∥2
L2(Ω)

)1/2
. For vector

functions v = (v1, v2) we define weighted spaces L2,β (Ω) and W1
2,β (Ω) with norms ∥v∥L2,β (Ω) =

(∑2
i=1∥vi∥

2
L2,β (Ω)

)1/2
and

∥v∥W1
2,β (Ω) =

(∑2
i=1∥vi∥

2
W1

2,β (Ω)

)1/2
respectively. Let |v|W1

2,β (Ω) be a seminorm of a vector function v in the space W1
2,β (Ω):

|v|W1
2,β (Ω) ≡ ∥∇v∥L2,β (Ω) =

(∑2
i=1

(∑
|m|=1∥ρ

β
|Dmvi|∥

2
L2(Ω)

))1/2
.
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