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FLUX FORMULATION OF PARABOLIC EQUATIONS WITH HIGHLY

HETEROGENEOUS COEFFICIENTS

PETER MINEV1, SHRIRAM SRINIVASAN2, AND PETR N. VABISHCHEVICH3,4

Abstract. In this paper we study the flux formulation of unsteady diffusion equations with highly
heterogeneous permeablity coefficients and their discretization. In the proposed approach first an
equation governing the flux of the unknown scalar quantity is solved, and then the scalar is recovered
from its flux. The problem for the flux is further discretized by splitting schemes that yield locally
one-dimensional problems, and therefore, the resulting linear systems are tridiagonal if the spatial
discretization uses Cartesian grids. A first and a formally second order time discretization splitting
scheme have been implemented in both two and three dimensions, and we present results for a few
model problems using a challenging benchmark data set.

1. Introduction

Models of compressible multiphase flow and transport through porous media contain a nonlinear
parabolic equation called Richards equation (see for example [5] and [14]):

∂b(u)

∂t
= ∇ · [k(x, u)∇u+ g(x, u)] + f(x, t),

with b(u) being a monotonically increasing function of u. The most challenging difficulty in solving
this problem is usually posed by the highly heterogeneous (eventually tensorial) coefficient k(x, u)
that may vary by several orders of magnitude and the characteristic length scale of such variations
can be very small as compared to the size of the domain of the problem. The resolution of such
variations requires the use of extremely fine grids that leads to serious computational challenges.
Therefore, a number of approaches have been proposed to circumvent this difficulty by computing
analytically (in case of periodic or random variations) or numerically some upscaled coefficient that
can represent the effect of the small scale variations on the large-scale problem. The numerical ap-
proaches that are predominant in case of porous media flows, can be divided in two main categories.
The methods in the first category usually solve on each discretization cell a local elliptic problem
with Dirichlet boundary conditions and devise from these solutions a new set of basis functions
(in case of finite element approximations) or a new finite difference approximation to the second
order operator, that can represent the effect of the small-scale variations of the coefficient onto the
large-scale discretization of the equation. Examples of such methods are the multiscale Galerkin
finite element method ( [2, 6, 9, 11]), mixed multiscale finite element method (e.g. [1, 3]), mortar
multiscale methods (e.g. [22]), variational multiscale method (e.g. [15]), and the multiscale finite
volume method developed in [14, 16, 17]. The methods in the second category rely on the solution
of local eigenvalue problems and use the eigenfunctions corresponding to the first several smallest
eigenvalues in order to discretize the problem at the large scale (see e.g. [10,12]). Such an approach
works well if the coefficient k(x, u) does not essentially change in time since then the computation
of the basis or the set of eigenfunctions can be performed once at the beginning of the computation
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