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a b s t r a c t

The standard application of the Lehmann–Goerisch method for lower bounds on eigen-
values of symmetric elliptic second-order partial differential operators relies on deter-
mination of fluxes σ̃ i that approximate co-gradients of exact eigenfunctions scaled by
corresponding eigenvalues. Fluxes σ̃ i are usually computed by solving a global saddle point
problem with mixed finite element methods. In this paper we propose a simpler global
problem that yields fluxes σ̃ i of the same quality. The simplified problem is smaller, it is
positive definite, and any H(div,Ω) conforming finite elements, such as Raviart–Thomas
elements, can be used for its solution. In addition, these global problems can be split into a
number of independent local problems on patches, which allows for trivial parallelization.
The computational performance of these approaches is illustrated by numerical examples
for Laplace and Steklov type eigenvalue problems. These examples also show that local flux
reconstructions enable computation of lower bounds on eigenvalues on considerably finer
meshes than the traditional global reconstructions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Methods for lower bounds on eigenvalues of symmetric elliptic partial differential operators attract growing attention
in the last years [1–13]. The Lehmann–Goerisch method stems from a long history of development [14–16] and it is one
of the most advanced methods. It is based on the Lehmann method [17,18] and the (X,B, T ) concept of Goerisch [19].
Practically, this method relies on conforming approximations of eigenfunctions of interest, subsequent flux reconstructions,
and an a priori known (rough) lower bound of certain eigenvalue. In this paper we concentrate on flux reconstructions that
approximate co-gradients of approximate eigenfunctions scaled by corresponding eigenvalues.

From the computational point of view, the flux reconstruction is usually obtained by solving a global saddle point
problem [20]. This problem is considerably larger than the original eigenvalue problem, its saddle point structure brings
technical difficulties, and for large problems it is a bottleneck of this approach.

Therefore,we propose to reconstruct the fluxes by solving a smaller (in terms of degrees of freedom) and simpler problem.
The simpler problem provides the flux reconstruction of the same quality and in addition it is positive definite (meaning
that the corresponding matrix is positive definite). Thus, it can be solved by any H(div,Ω) conforming finite elements as
opposed to the original saddle point problem, where a suitable mixed finite element method has to be employed. Despite
these advantages, even the simpler problem for fluxes is considerably larger than the eigenvalue problem itself. Therefore,we
utilize the idea of [21–23] and propose localized versions of both the saddle point and simpler problems. Localized versions
are based on solving independent small local problems on patches of elements and their accuracy is competitive with global
problems. The main advantage of the localized problems lies in the fact that they are independent and can be solved in
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parallel. Their memory requirements are low and they enable us to compute lower bounds on eigenvalues for considerably
finer meshes than the traditional global flux reconstructions.

Themain goal of this paper is to provide the flux reconstruction procedures for a general eigenvalue problem: find λi > 0
and ui ̸= 0 such that

− div(A∇ui) + cui = λiβ1ui inΩ,
(A∇ui) · nΩ + αui = λiβ2ui on ΓN, (1)

ui = 0 on ΓD,

whereΩ ⊂ Rd is an open Lipschitz domain, d a dimension, ΓD and ΓN are two relatively open components of ∂Ω such that
Γ D ∪ Γ N = ∂Ω and ΓD ∩ ΓN = ∅, and nΩ is the unit outward facing normal vector to the boundary ∂Ω . Note that specific
choices of parameters in problem (1) yield to the standard eigenvalue problems such as the Laplace eigenvalue problem and
Steklov eigenvalue problem.

However, in order to explain the main idea without technicalities, we first consider the Laplace eigenvalue problem,
see Sections 2–3. The following sections deal with the general eigenvalue problem. Section 4, in particular, shifts the
eigenvalue problem (1) and briefly presents its well-posedness and finite element discretization. Section 5 introduces the
Lehmann–Goerisch method and the global mixed finite element problem for the flux reconstruction. Section 6 analyses
the Lehmann–Goerisch method and derives the simplified global problem for the flux reconstruction. Section 7 presents
local versions of these global problems and transforms them to a series of independent problems on patches of elements.
Sections 8–9 compare the accuracy and computational performance of the global and local flux reconstructions for the
Laplace and Steklov-type eigenvalue problem on a dumbbell shaped domain. Finally, Section 10 draws conclusions.

2. The Lehmann–Goerisch method for Laplace eigenvalue problem

We first describe how to obtain lower bounds on eigenvalues by the Lehmann–Goerisch method for the special case of
the Laplace eigenvalue problem. We seek eigenvalues λi > 0 and eigenfunctions ui ̸= 0 such that

−∆ui = λiui inΩ, (2)
ui = 0 on ∂Ω.

Theweak formulation of this problem is posed in the Sobolev space V = H1
0 (Ω) consisting ofH1(Ω) functionswith vanishing

traces on ∂Ω and reads as follows: find eigenvalues λi > 0 and eigenfunctions ui ∈ V \ {0} such that

(∇ui,∇v) = λi(ui, v) ∀v ∈ V , (3)

where (·, ·) stands for the L2(Ω) inner product. This problem iswell posed and possesses a countable sequence of eigenvalues
0 < λ1 ≤ λ2 ≤ · · · , see e.g. [24,25].

In order to discretize problem (3) by the standard conforming finite element method, we consider Ω to be a polytope.
We introduce a standard simplicial mesh Th inΩ and define the lowest-order finite element space

Vh = {vh ∈ V : vh|K ∈ P1(K ) ∀K ∈ Th}, (4)

where P1(K ) is the space of affine functions on the simplex K . The finite element approximation of problem (3) corresponds
to the finite dimensional problem of seeking eigenvaluesΛh,i ∈ R and eigenfunctions uh,i ∈ Vh \ {0} such that

(∇uh,i,∇vh) = Λh,i(uh,i, vh) ∀vh ∈ Vh. (5)

Discrete eigenvalues are naturally sorted in ascending order: 0 < Λh,1 ≤ Λh,2 ≤ · · · ≤ Λh,N , where N = dim Vh.
It is well known that Λh,i approximates λi from above and that the order of convergence of the finite element

approximation Λh,i is optimal (quadratic in the case of no singularities) [24,25]. The Lehmann–Goerisch method enables
us to compute approximations of λi from belowwith the same order of convergence. The idea of this method is summarized
in [20, Theorem 2.1]. For the readers’ convenience we recall this theorem here. Note that W = H(div,Ω) denotes the
standard space of square integrable vector fields with square integrable divergence.

Theorem 2.1 (Behnke, Mertins, Plum, Wieners). Let ũi ∈ V , σ̃ i ∈ W , i = 1, 2, . . . , n, and ρ > 0, γ > 0 be arbitrary. Define
matrices M,N ∈ Rn×n with entries

Mij = (∇ũi,∇ũj) + (γ − ρ)(ũi, ũj),

Nij = (∇ũi,∇ũj) + (γ − 2ρ)(ũi, ũj) + ρ2(σ̃ i, σ̃ j) + (ρ2/γ )(ũi + div σ̃ i, ũj + div σ̃ j).

Suppose that the matrix N is positive definite and that

µ1 ≤ µ2 ≤ · · · ≤ µn
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