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Alternation points and bivariate Lagrange interpolation

Lawrence A. Harris

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

Abstract

Given m + 1 strictly decreasing numbers h0, h1, . . . , hm, we give an algorithm to
construct a corresponding finite sequence of orthogonal polynomials p0, p1, . . . , pm
such that p0 = 1, pj has degree j and pm−j(hn) = (−1)npj(hn) for all j, n =
0, 1, . . . ,m. Using these polynomials, we construct bivariate Lagrange polynomials
and cubature formulas for nodes that are points in R2 where the coordinates are
taken from given finite decreasing sequences of the same length and where the
indices have the same (or opposite) parity.
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1. Introduction

Our object is to show that every decreasing finite sequence of real numbers is
the set of alternation points of a finite sequence of orthogonal polynomials and to
apply this to construct Lagrange polynomials and cubature formulas for the even
and odd nodes of the Cartesian product of the points.

A motivating example of alternation points is the Chebyshev points hn =
cos(nπ/m) and the corresponding polynomials are the Chebyshev polynomials
Tn, where Tn(cos θ) = cos(nθ). In previous papers [20, 24, 4], the alternation
property (given in the Abstract) was used implicitly to construct two sets of
bivariate polynomials having common zeros. The zeros were pairs of Chebyshev
points where both indices of all pairs have the same or have opposite parity. We
call two such sets of common zeros the even and odd product nodes, respectively.
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