Accepted Manuscript

Comments on the description and initialization of fractional partial differential equations using Riemann–Liouville's and Caputo's definitions

Jocelyn Sabatier, Christophe Farges

PII: S0377-0427(18)30109-2


DOI: https://doi.org/10.1016/j.cam.2018.02.030

Reference: CAM 11536

To appear in: Journal of Computational and Applied

Mathematics

Received date: 27 June 2017 Revised date: 5 February 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Comments on the description and initialization of fractional partial differential equations using Riemann-Liouville's and Caputo's definitions

Jocelyn SABATIER and Christophe FARGES

Bordeaux University, IMS Laboratory, 351 cours de la Libération, 33405 Talence cedex, (email : firstname.name@ims-bordeaux.fr)

Abstract

In this paper, it is shown that neither Riemann-Liouville's nor Caputo's definitions can be used to properly take into account initial conditions in the description of a fractional partial differential equation. This demonstration is done on a counterexample. Some suggestions are made to address this problem.

Keywords: Fractional partial differential equations, Caputo's fractional differentiation, Riemann-Liouville's fractional differentiation, initialization.

1. Introduction

In the field of fractional systems, many results have been obtained through straightforward extensions of existing results dedicated to integer systems. Sometimes these generalizations were proposed a little hastily and led to incorrect interpretations. While the various definitions of fractional differentiation that now coexist are all mathematically exact, their physical meaning remains obscure [1], [2], [3], [4], [5]. The way in which some take initial conditions into account remains debatable. For the first time, the non-equivalence of Riemann-Liouville's and Caputo's definitions in the presence of initial conditions or more accurately *history* was revealed in [6]. The question that immediately followed was: what happens when these definitions are used in a pseudo state space description of the form:

$$D^{\alpha}x(t) = Ax(t) + Bu(t), \qquad y(t) = Cx(t) + Du(t) \tag{1}$$

Download English Version:

https://daneshyari.com/en/article/8901977

Download Persian Version:

https://daneshyari.com/article/8901977

<u>Daneshyari.com</u>