
Journal of Computational and Applied Mathematics 338 (2018) 44–68

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

The halfspace matching method: A new method to solve
scattering problems in infinite media
Anne-Sophie Bonnet-Ben Dhia a, Sonia Fliss a,*, Antoine Tonnoir b

a POEMS (UMR 7231 CNRS-ENSTA-INRIA), ENSTA Paristech, 828 Boulevard des Marechaux, 91762 Palaiseau Cedex, France
b Normandie University, INSA Rouen Normandie, LMI, 76000 Rouen, France

a r t i c l e i n f o

Article history:
Received 25 July 2017
Received in revised form 4 December 2017

Keywords:
Anisotropic Helmholtz equation
Plane-waves representations
Fourier transform
Integral operators
Domain decomposition methods

a b s t r a c t

We are interested in acoustic wave propagation in time harmonic regime in a two-
dimensional medium which is a local perturbation of an infinite isotropic or anisotropic
homogeneous medium. We investigate the question of finding artificial boundary con-
ditions to reduce the numerical computations to a neighborhood of this perturbation.
Our objective is to derive a method which can extend to the anisotropic elastic problem
for which classical approaches fail. The idea consists in coupling several semi-analytical
representations of the solution in halfspaces surrounding the defect with a Finite Element
computation of the solution around the defect. As representations of the same function,
they have to match in the infinite intersections of the halfspaces. It leads to a formulation
which couples, via integral operators, the solution in a bounded domain including the
defect and its traces on the edge of the halfspaces. A stability property is shown for this
new formulation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and model problem

This work is motivated by the numerical simulation of Non Destructive Testing or Structural Health Monitoring
experiments in anisotropic elasticmedia (see for instance [1]). More precisely, we are interested in simulating the diffraction
of time-harmonic waves by a localized perturbation in a homogeneous two dimensional infinite anisotropic elastic medium.
Since themedium is infinite, there are theoretical difficulties – how to define the so called outgoing solution of such problem?
– and numerical difficulties — can we introduce an equivalent formulation which is suitable for numerical purposes (for
instance a formulation set in a bounded domain with appropriate boundary conditions)?

This is an old problematic [2] for time harmonic scalar wave equations and there exist several methods. They are all
based on the natural idea of reducing the pure numerical computations to a bounded domain containing the perturbations
(achieved using for instance Finite Element methods). A first class of methods consists in applying an artificial boundary
conditions, around the bounded domain, which is transparent or approximately transparent as in: (1) integral equation
techniques, (2) Dirichlet-to-Neumann approaches providing that the boundary is properly chosen to allow separation of
variables and (3) local radiation conditions at finite distance constructed as local approximations at various order of the exact
non local condition. These techniques were first introduced for the time harmonic scalar wave equation – the Helmholtz
equation – and then extended to isotropic elasticity problemsusing simply theHelmholtz decomposition of the displacement
field in terms of potential (see for instance [3]). However it seems that all these techniques either do not extend to anisotropic
elastic media – the separation of variables is not possible anymore to determine the Dirichlet-to-Neumann (DtN) operator –
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or do extend butwith a tremendous computational cost— for the integral equation techniques, the Green tensor depends not
only on the distance between two points but also on the orientation [4]. A second class of methods consists in surrounding
the computational domain by a Perfectly Matched absorbing Layer (PML). PML techniques are very popular because they are
efficient and easy to implement in a large class of problems. But they may be inoperant. Roughly speaking, the PML absorbs
the wave with an outgoing phase velocity, preventing them to come back in the computational domain, while in order
to catch the physical solution, it should absorb the waves with outgoing group velocities. That is why to our knowledge
the standard PML technique works for isotropic elastic media (in which the waves with outgoing phase velocities have
outgoing group velocities and vice versa) but cannot work for general anisotropic elastic media where the two velocities
may differ [5–7]. Let usmention finally the pole conditionmethodwhichwas developed recently and adapted to anisotropic
elastic waveguide in the past few years [8,9].

By contrast, our method which is inspired by the method developed in [10,11] for locally perturbed periodic media can
cover all the cases. It is based on a simple idea: the solution of homogeneous – isotropic or anisotropic, acoustic or elastic
– halfspace problems can be expressed thanks to its trace on the halfspace boundary. As several halfspaces surrounding
the perturbations are needed to recover the whole domain, they will necessarily overlap. The second step is then to find
conditions to ensure the compatibility of the representations in the overlapping zones. This method has links with domain
decomposition methods with overlap [12–14], with the specific difficulty that here the overlapping zones are unbounded.
More precisely, the idea is to split the whole domain into five parts:

• a square that includes the defect (and all the inhomogeneities) in which we will use a Finite Element representation
of the solution,

• and 4 half-planes, parallel to the four edges of the square in which the medium is homogeneous.

Taking advantage of the homogeneity of the medium in a half-plane, we can give an explicit (integral) expression of the
solution given (for instance) its trace on the edge of the half-plane, via the Fourier transform in the transverse direction.
With these integral representations and the Finite Element representation of the solution in the square, we can formulate
a coupled problem. To ensure the compatibility of the different representations, as in domain decomposition methods, we
impose transmission conditions on the edges of the subdomains. This leads us to a system of coupled equations where the
unknowns are the solution in the bounded square and the traces of the solution on the edges of the half-planes.

Obviously, compared to absorbing layers methods, this approach is more costly due to the additional unknowns (the
traces) linked by non-local integral equations. One counterpart is that this additional computation of the traces enables to
reconstruct a posteriori the solution in the half-planes (and therefore in the whole domain), which is impossible for instance
when using non exact absorbing boundary conditions or PML.

In the paper, we consider the simple model case of a scalar equation: the dissipative anisotropic Helmholtz equation.
We reformulate the diffraction problem and analyze the properties of this reformulation. Let us underline that, though our
analysis holds only for dissipative media, the method gives good numerical results also in the non-dissipative case. We will
explain, in a dedicated section, the theoretical difficulties raised by the case without dissipation. We should also emphasize
that this approach remains valid for anisotropic elastic media since it mainly relies on the homogeneity of the medium in
the half-planes to get the Fourier representations (see [15]). The complete description of the method in the elastic case will be
the topic of another paper.

The general model problem that we consider in this paper is then⏐⏐⏐ −div(A(x, y)∇p) − ω2
ε ρ(x, y)p = f in Ω, (1)

in the time harmonic regime at the frequency Re(ωε) = ω with a small absorption Im(ωε) = ε > 0, where A is a symmetric
positive definite matrix of (L∞(Ω))2×2 modeling the anisotropy and ρ is a strictly positive function of L∞(Ω).

The propagation domainΩ is typically R2, or R2 minus a set of obstacles which are included in a bounded region

∃a > 0, ∂Ω ⊂ Ωa ≡ (−a, a)2.

In presence of obstacles, some boundary conditions have to be added to the model. The source term f is supposed to be a
function of L2(Ω) with a compact support included inΩa. Finally, the matrix A is a local perturbation of a constant matrix A0

supp(A − A0) ⊂ Ωa, where A0 =

(
c1 c3
c3 c2

)
with

{
c1, c2 > 0,
c1c2 − (c3)2 > 0, (2)

and the function ρ is a local perturbation of a constant function, which is taken, without loss of generalities, equal to 1

supp(ρ − 1) ⊂ Ωa. (3)

For variational boundary conditions on ∂Ω – for instance Neumann or Dirichlet conditions – it is well known that thanks to
the dissipation, this problem admits a unique solution in H1(Ω).

To clarify the presentation of the method, we will consider three situations of increasing difficulty.
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