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a b s t r a c t

We study the limit cycles of two families of piecewise-linear differential systems inR3 with
two pieces separated by a plane Σ . In one family the differential systems are continuous
on the plane Σ , and in the other family they are discontinuous on the plane Σ .

The usual tool for studying these limit cycles is the Poincaré map, but here we shall
use recent results which extend the averaging theory to continuous and discontinuous
differential systems.

All the computations have been done with the algebraic manipulator Mathematica.
© 2018 Elsevier B.V. All rights reserved.

1. Introduction and statement of the main results

The study of piecewise linear differential systems essentially started with Andronov, Vitt and Khaikin [1] and still
continues to receive attention by researchers. The continuous and discontinuous piecewise-linear differential systems play
an important role inside the nonlinear dynamical systems. First they appear in a natural way in nonlinear engineering
models, where certain devices are accuratelymodeled by such differential systems, see for instance the books of di Bernardo,
Budd, Champneys and Kowalczyk [2], and Simpson [3], the survey of Makarenkov and Lamb [4], and the hundreds of
references quoted in these last three works. Moreover these kinds of differential systems are frequent in applications from
electronic engineering and nonlinear control systems, where they cannot be considered as idealized models; they are also
used in mathematical biology as well, see for instance [5–8].

There are many studies of the limit cycles of continuous and discontinuous piecewise-linear differential systems in R2

with two pieces separated by a straight line, see for instance [9–27]. But there are few results about the limit cycles of
continuous and discontinuous piecewise-linear differential systems in R3 with two pieces separated by one plane, see for
example [28–30]. The objective of this work is to study the limit cycles of some of these last systems.

We consider perturbations of the linear differential system

ẋ = −y,
ẏ = x,
ż = sx,

(1)
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with (x, y, z) ∈ R3 and s a real parameter. The dot denotes derivative with respect to an independent variable t , usually
called the time. Straightforward computations show that the solutions of system (1) are all periodic with the exception of
the z-axis which is filled with equilibria.

In this paper first we study the periodic solution of the following perturbed continuous piecewise linear differential
system

ẋ = −y + ε(a + bx + cy + d|z|),
ẏ = x + ε(e + fx + gy + h|z|),
ż = sx + ε(j + kx + ly + m|z|),

(2)

of system (1) with two zones z > 0 and z < 0, where a, b, c, d, e, f , g, h, j, k, l andm are real parameters and the parameter
ε > 0 is sufficiently small. Changing z by −z if necessary, we always can assume that the parameter s ≥ 0. The reason of
perturbing the linear differential system (1) is due to the fact that this is the linear differential system in R3 having more
periodic solutions, because all its solutions are periodic except the z-axis which is filled of singular points.

Our main result on the periodic solutions of the continuous piecewise linear differential system (2) is the following.
This result is obtained using the extension of the classical averaging theory for smooth differential systems to continuous
differential systems given in [31], see Section 2 for more details.

Theorem 1. For the continuous piecewise differential system (2) the following statements hold.

(a) For ε > 0 sufficiently small if s > 0 there exist values r∗ and z∗ such that system (2) has the periodic solution

(x(t), y(t), z(t)) = (r∗ cos t + O(ε), r∗ sin t + O(ε), z∗
+ sr∗ sin t + O(ε)),

if
(b + g)

hs
∈ [−1, 0) ∪ (0, 1] and

(es − j)
s(m − hs)

> 0.

(b) If s = 0 system (2) has two periodic solutions

(x(t), y(t), z(t)) = (µ1 cos t + O(ε2), µ2 sin t + O(ε2), ±j/m + O(ε2)),

where µ1 = O(ε) and µ2 = O(ε), if (b + g)m ̸= 0, j/m < 0 and ε > 0 sufficiently small is such that O(ε) > 0.

Theorem 1 is proved in Section 3 using the averaging theory of first order for the continuous piecewise linear differential
systems. We note that the averaging theory is one of the few tools that when it can be applied allows to prove analytically
the existence of periodic orbits. We remark that in general this tool does not find all the periodic orbits of a differential
system. Another good tool for studying analytically the periodic solutions of non-smooth differential systems is theMelnikov
theory. Thus see for instance the papers [32,33] where the authors studied planar non-smooth systems using the Melnikov
theory, and also the papers [34,35] for 3-dimensional non-smooth systems. In fact Melnikov theory and averaging theory
are essentially different formulation of equivalent theories, see for details [36].

Many problems in physics, economics, biology and applied areas are modeled by discontinuous differential systems but
there exist only few analytical techniques for studying their periodic solutions. In [37] the authors extended the averaging
theory to discontinuous differential systems. An improvement of this result for a much bigger class of discontinuous
differential systems is given in [38].

Applying these tools we also investigate the periodic solutions of the discontinuous piecewise linear differential system

ẋ = −y + ε(a + bx + cy + df (z)),
ẏ = x + ε(e + fx + gy + hf (z)),
ż = sx + ε(j + kx + ly + mf (z)),

(3)

with two pieces defined by f (z) = z + sign(z) and

sign(z) =

{
1 if z > 0,

−1 if z < 0.

We get the following result on the periodic solutions of the discontinuous piecewise linear differential system (3).

Theorem 2. Using the averaging theory of first order for the discontinuous piecewise linear differential system (3), the following
statements hold.

(a) If s > 0 and
⏐⏐ es−j
hs−m

⏐⏐ ∈ (0, 1], for ε > 0 sufficiently small there exist values r∗ such that system (3) has the crossing periodic
solution

(x(t), y(t), z(t)) = (r∗ cos t + O(ε), r∗ sin t + O(ε), z∗
+ sr∗ sin t + O(ε)),

where z∗
= −

sr∗
4

√
16 −

π2(b+g+hs)2(r∗)2

h2
if es−j

hs−m ∈ (0, 1] and z∗
=

sr∗
4

√
16 −

π2(b+g+hs)2(r∗)2

h2
if −

es−j
hs−m ∈ (0, 1].
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