Accepted Manuscript

Numerical solutions for solving time fractional Fokker-Plank equations based on spectral collocation methods

Yin Yang, Yunqing Huang, Yong Zhou

PII: \quad S0377-0427(17)30158-9
DOI: http://dx.doi.org/10.1016/j.cam.2017.04.003
Reference: CAM 11082

To appear in: Journal of Computational and Applied Mathematics

Received date: 28 February 2017
Revised date: 29 March 2017

Please cite this article as: Y. Yang, Y. Huang, Y. Zhou, Numerical solutions for solving time fractional Fokker-Plank equations based on spectral collocation methods, Journal of Computational and Applied Mathematics (2017), http://dx.doi.org/10.1016/j.cam.2017.04.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Manuscript

NUMERICAL SOLUTIONS FOR SOLVING TIME FRACTIONAL FOKKER-PLANK EQUATIONS BASED ON SPECTRAL COLLOCATION METHODS

YIN YANG ${ }^{1, *}$, YUNQING HUANG ${ }^{1}$, AND YONG $Z^{2} H O U^{1, *}$

Abstract

In this paper, we consider the numerical solution of the time fractional Fokker-Plank equation. We propose a spectral collocation method in both temporal and spatial discretizations with a spectral expansion of Jacobi interpolation polynomial for this equation. The convergence of the method is rigourously established. Numerical tests are carried out to confirm the theoretical results. keywords: fractional Fokker-Plank equation; Jacobi collocation method; convergence. AMS subject classifications: 35R35, 65M12, 65M70

1. Introduction

The time evolution of the probability density function of position and velocity of a particle, which is one of the classical, widely used equations of statistical physics was modeled many times based on the linear Smolochowski Fokker-Planck equation (FPE)

$$
\begin{equation*}
\frac{\partial}{\partial t} P(z, t)=\left[\frac{\partial}{\partial z} \frac{V^{\prime}(z)}{m \eta_{1}}+K_{1} \frac{\partial^{2}}{\partial z^{2}}\right] P(z, t) \tag{1.1}
\end{equation*}
$$

which defines the probability density function $P(z, t)$ to find the test particle at a certain position z at a given time t. where $V(z)$ indicates the potential of overdamped Brownian motion, a prime stands for the derivative w.r.t. the space coordinate z, m denotes the mass of the particle, K_{1} denotes the diffusion constant associated with the transport process, and the friction coefficient η_{1} is a measure for the interaction of the particle with its environment. The basic properties of the FPE are the exponential decay of the modes, the Einstein relations which are intimately connected with the fluctuation-dissipation theorem and with linear response, and the Gaussian evolution in the force-free case. For example, in the force-free case, i.e., $V(z)=$ const, the corresponding diffusion process is governed by Ficks second law, leading to the linear time dependence

$$
\begin{equation*}
<z^{2}(t)>=2 K_{1} t \tag{1.2}
\end{equation*}
$$

of the mean square displacement; this hallmark of Gaussian diffusion is a consequence of the central limit theorem. In a variety of systems one find that the (1.2) is violated.

[^0]
https://daneshyari.com/en/article/8902046

Download Persian Version:

https://daneshyari.com/article/8902046

Daneshyari.com

[^0]: ${ }^{1}$ School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan, P.R.China.
 *Corresponding author. E-mail: yzhou@xtu.edu.cn (Yong Zhou), yangyinxtu@xtu.edu.cn (Yin Yang).

