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a b s t r a c t

CMRH method (Changing minimal residual with Hessenberg process) is an iterative
method for solving nonsymmetric linear systems. This method is similar to QMR method
but based on the Hessenberg process instead of the Lanczos process. On dense matrices,
the CMRH method is less expensive and requires less storage than other Krylov methods.
This paper presents a block version of the CMRH algorithm for solving linear systems with
multiple right-hand sides. The new algorithm is based on the block Hessenberg process
and the iterates are characterized by a block version of the quasi-minimization property.
We analyze its main properties and show that under the condition of full rank of block
residual the block CMRH method cannot break down. Finally, some numerical examples
are presented to show the efficiency of the newmethod in comparison with the traditional
CMRH method and a comparison with the block GMRES method is also provided.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We consider the solution of large linear systems with multiple right-hand sides of the form

AX = B, (1)

where A is an n×n nonsingularmatrix, and B = [b(1), . . . , b(s)], X = [x(1), . . . , x(s)] are rectangular n×smatrices. In practice, s
is small relative to n. Many applications such as in electromagnetic scattering problem and in structural mechanics problems
require the solution of linear systems with multiple right-hand sides (1).

For large problems,many iterativemethods, which are the generalizations of the classical Krylov subspacemethods, have
been proposed in recent years. One class of solvers is the global Krylov subspace methods, which are based on the use of a
global projection process onto a matrix Krylov subspace. References on this class include [1–11]. Another class is the seed
methods, which consist of selecting a single system as the seed system and generating the corresponding Krylov subspace
and then projecting all the residuals of the other linear systems onto the same Krylov subspace to find new approximate
solutions as initial approximations. References on this class include [12–14] . The other class is the block Krylov subspace
solvers which are more suitable for dense systems with preconditioner. The Block Conjugate Gradient (BCG) is the first
block iterative solver introduced by O’Leary [15], its related algorithms were proposed for parallel computers [16], and a
breakdown-free block conjugate gradient method presented in [17]. For nonsymmetric problems, the block generalized
minimal residual (Bl-GMRES) algorithm [18–23], the block quasi minimum residual (Bl-QMR) algorithm [24], the block
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BiCGStab (Bl-BICGSTAB) algorithm [25,26], the block Lanczos method [27] , the block least squares (Bl-LSQR) algorithm [28],
the block IDR(s) method [29], the block GCROT(m, k) method [30], and the block LSMR method [31], have been developed.

In this paper, we generalize the CMRHmethod [32] to solve linear systems with multiple right-hand sides. The proposed
method is referred to as block CMRH (Bl-CMRH) method. We analyze its main properties and show that under the condition
of full rank of block residual the block CMRH method cannot break down.

The paper is organized as follows. In Section 2, we shortly review the Hessenberg process and CMRHmethod.We present
the block version of the Hessenberg process and its properties in Section 3. In Section 4, we describe the block CMRHmethod.
Section 5 demonstrates the effectiveness of the proposed method. Conclusions are summarized in Section 6.

Throughout the paper, all vectors and matrices are assumed to be real. For a vector v, ∥v∥ always denotes the Euclidean
norm ∥v∥ =

√
(vTv) and ∥v∥∞ denotes the maximum norm ∥v∥∞ = maxi=1,...,n|vi|, where vi is the ith component of the

vector v. For a matrix X , ∥X∥F denotes the Frobenius norm ∥X∥F =

√
tr(XTX). For a matrix V ∈ Rn×s, the block Krylov

subspaceKk(A, V ) is the subspace generated by the columns of the matrices V , AV , A2V , . . . , Ak−1V . SomeMATLAB notation
is used; for instance, Hk(i + 1 : m + 1, 1 : m) denotes the portion of Hk with rows from i + 1 to m + 1 and columns from 1
tom. Finally, 0s and Is will denote the zero and the identity matrices in Rs×s, respectively.

2. CMRHmethod

In this section, we consider the linear system of equations

Ax = b, (2)

where A ∈ Rn×n is a nonsingular and nonsymmetric matrix, b ∈ Rn is a given vector.
The CMRH method is an algorithm for solving nonsymmetric linear systems in which the Arnoldi component of GMRES

is replaced by the Hessenberg process, which generates Krylov basis vectors which are orthogonal to standard unit basis
vectors rather than mutually orthogonal. The iterate is formed from these vectors by solving a small least squares problem
involving a Hessenberg matrix.

Let v be a column vector of Rn and A an n × n real matrix. The Hessenberg reduction process (without pivoting strategy)
computes a unit trapezoidal matrix Lm = [l1, . . . , lm] whose columns form a basis of the Krylov subspace Km(A, v) =

span{v, Av, . . . , Ak−1v} by using the following formulas:⎧⎪⎪⎨⎪⎪⎩
β = (v)1, l1 = v/β,

hk+1,klk+1 = Alk −

k∑
j=1

hj,klj, for k = 1, . . . ,m.

The parameters hj,k are determined such that

lk+1⊥e1, . . . , ek and (lk+1)k+1 = 1.

The Hessenberg process can break down if hk+1,k is zero.We can avoid such a breakdown and also ensure numerical stability
if we use a pivoting strategy such as in the Gaussian elimination method (see, for example, [33]). Algorithm 1 summarizes
the Hessenberg process with pivoting strategy [34].

Algorithm 1 Hessenberg process with pivoting strategy

1. p = [1, 2, . . . , n]T ,
Determine i0 such that |(v)i0 |= ∥v∥∞, β = (v)i0 , l1 =

v

β
, p1 ↔ pi0

2. For k = 1, . . . ,m
u = Alk,
For j = 1, . . . , k

hj,k = (u)pj ,
u = u − hj,klj,

end
If (k < n and u ̸= 0) then

Determine i0 ∈ {k + 1, . . . , n} such that |(u)pi0 |= ∥(u)pk+1 :pn∥∞,
hk+1,k = (u)pi0 , lk+1 = u/hk+1,k, pk+1 ↔ pi0 ,

else
hk+1,k = 0, stop.

end
end
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