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a b s t r a c t

Recently, Mao (2015) developed a new explicit method, called the truncated Euler–
Maruyama (EM) method, for the nonlinear SDE and established the strong convergence
theory under the local Lipschitz condition plus the Khasminskii-type condition. In his
another follow-up paper (Mao, 2016), he discussed the rates of Lq-convergence of the
truncated EM method for q ≥ 2 and showed that the order of Lq-convergence can
be arbitrarily close to q/2 under some additional conditions. However, there are some
restrictions on the truncation functions and these restrictions sometimes might force the
step size to be so small that the truncated EM method would be inapplicable. The key aim
of this paper is to establish the convergence rate without these restrictions. The other aim
is to study the stability of the truncated EMmethod. The advantages of our new results will
be highlighted by the comparisons with the results in Mao (2015, 2016) as well as others
on the tamed EM and implicit methods.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Influenced by Higham, Mao and Stuart [1], the strong convergence theory of numerical methods for nonlinear stochastic
differential equations (SDEs) without the global Lipschitz condition has become more and more popular. Although the
classical Euler–Maruyama (EM) method is convenient for computations and implementations, the absolute moments of its
approximation for SDEswith super-linear coefficients diverge to infinite at a finite time (see, e.g., [2]).Many implicitmethods
were used to study the numerical solutions to SDEs with nonlinear coefficients (see, e.g., [1,3–7]). Especially, Higham, Mao
and Stuart [1] proved that the implicit EM numerical solutions converge strongly to the exact solutions of SDEs with globally
one-sided Lipschitz continuous drift term and globally Lipschitz diffusion term, but the explicit EM method fails to do that.
For the background on the implicit methods, we refer the reader to the books [8–10]. However, it is demonstrated that the
implementation of the implicit EM method requires more computational effort. Recently, due to the advantages of explicit
methods, Hutzenthaler, Jentzen and Kloeden proposed an explicit method for such SDEs called tamed Euler method whose
numerical solutions converge strongly to the exact solutionwith 1/2 order. Sabanis in [11]went a further step to propose the
modified tamed Eulermethod approximating the SDEswith superlinearly growing drift and diffusion coefficients, moreover,
recovered the strong order 1/2 in the estimation of convergence rate. Other explicit methods, such as the stopped EM
method, as well as the tamed Milstein method, have been further developed (see, e.g., [12,13] for details).
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In particular, Mao [14] in 2015 proposed a new explicit method, called the truncated EM method. In his another follow-
up paper [15], he investigated the convergence rates for the method under some additional conditions. We will point out
that some of these additional conditions might force the step size to be so small that the truncated EM method would be
inapplicable. One of our key aims in this paper is to establish the convergence rate without these restrictions so that the
truncated EMmethod is more widely implementable. To overcome the difficulties due to removing these restrictions, some
new mathematical techniques, which are significantly different from those used in [15], have been developed.

A nice numerical method should not only have an acceptable finite-time convergence rate but also have the ability to
preserve the asymptotic properties of the underlying SDEs (see, e.g., [16,17]). Another aim of this paper is to show the ability
of the truncated EMmethod to preserve the asymptotic stability of the underlying SDEs.

To show the advantages of the truncated EMmethod,wewill compare itwith othermethods, e.g., the implicit EMmethod,
the tamed Euler method and the modified tamed Euler method. We will design two numerical experiments and compute
the errors between the true solution and the numerical solutions obtained by different schemes. It turns out that to achieve
the same accuracy, the runtime of the truncated EMmethod and of the tamed Eulermethod are almost equivalent, butmuch
shorter than that of the implicit EM method. However, to achieve the same accuracy, the step size for the modified tame
Euler method is required to be smaller than that for the truncated EM method. These show clearly that the truncated EM
method might be more efficient and is certainly suitable for the highly nonlinear SDEs.

The rest of the paper is organized as follows. Section 2 gives some notation and preliminary results on the numerical
solution of the truncated EMmethod. Section 3 begins to demonstrate the improved convergence rate in a finite time interval.
Section 4 goes further to compare our result with the previous convergence rate results. Section 5makes use of the truncated
EM method to approximate the asymptotic stability. Section 6 concludes our main results. The Appendix proves that the
classical EM method cannot reproduce asymptotic stability while the truncated method does.

2. Notation and lemmas

Throughout this paper, unless otherwise specified, we let (Ω,F,P) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (that is, it is right continuous and increasing while F0 contains all P-null sets), and
let E denote the probability expectation with respect to P. Let B(t) be an m-dimensional Brownian motion defined on the
probability space and is Ft-adapted. If A is a vector or matrix, its transpose is denoted by AT . If x ∈ Rd, then |x| is the
Euclidean norm. If A is a matrix, we let |A| =

√
trace(ATA) be its trace norm. Moreover, for two real numbers a and b, we use

a ∨ b = max(a, b) and a ∧ b = min(a, b). For a set G, its indicator function is denoted by IG, namely IG(x) = 1 if x ∈ G and 0
otherwise.

Consider a d-dimensional nonlinear SDE

dx(t) = f (x(t))dt + g(x(t))dB(t), t ≥ 0, (2.1)

with the initial value x(0) = x0 ∈ Rd, where f : Rd
→ Rd and g : Rd

→ Rd×m are Borelmeasurable.We impose two standing
hypotheses in this paper.

Assumption 2.1. Assume that the coefficients f and g satisfy the local Lipschitz condition: For any R > 0, there is a KR > 0
such that

|f (x) − f (y)| ∨ |g(x) − g(y)| ≤ KR|x − y| (2.2)

for all x, y ∈ Rd with |x| ∨ |y| ≤ R.

Assumption 2.2. Assume that the coefficients satisfy the Khasminskii-type condition: There is a pair of constants p > 2 and
K > 0 such that

xT f (x) +
p − 1
2

|g(x)|2 ≤ K (1 + |x|2) (2.3)

for all x ∈ Rd.

We state a known result (see, e.g., [18,19]) as a lemma for the use of this paper.

Lemma 2.3. Under Assumptions 2.1 and 2.2, the SDE (2.1) has a unique global solution x(t) and, moreover,

sup
0≤t≤T

E|x(t)|p < ∞, ∀T > 0. (2.4)

Recall the truncated EM numerical scheme defined in [14]. We first choose a strictly increasing continuous function
µ : R+ → R+ such that µ(u) → ∞ as u → ∞ and

sup
|x|≤u

(
|f (x)| ∨ |g(x)|

)
≤ µ(u), ∀u ≥ 1. (2.5)
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