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ADAPTIVE PIECEWISE TENSOR PRODUCT WAVELETS SCHEME FOR
LAPLACE-INTERFACE PROBLEMS

NABI CHEGINI AND ROB STEVENSON

ABSTRACT. A Laplace type boundary value problem is considered with a gen-
erally discontinuous diffusion coefficient. A domain decomposition technique is
used to construct a piecewise tensor product wavelet basis that, when normalised
w.r.t. the energy-norm, has Riesz constants that are bounded uniformly in the
jumps. An adaptive wavelet Galerkin method is applied to solve the boundary
value problem with the best nonlinear approximation rate from the basis, in linear
computational complexity. Although the solutions are far from smooth, numer-
ical experiments in two dimensions show rates as for a one-dimensional smooth
solution, the latter being possible because of the tensor product construction.

1. INTRODUCTION

In this paper, we study second order linear elliptic problems, generally with a
discontinuous diffusion coefficient, that are known as Laplace-interface problems or
transmission problems. For some domain Ω ⊂ Rn, Γ ⊂ ∂Ω with |Γ| > 0, and given
f ∈ H1

0,Γ(Ω)′, we consider the problem of finding u ∈ H1
0,Γ(Ω) such that

(1.1) aκ(u, v) :=
∫

Ω
κ∇u · ∇v = f (v) ∀v ∈ H1

0,Γ(Ω).

For some fixed N, and 0 ≤ i ≤ N, let Ωi ⊂ Ω be mutually disjoint hypercubes
such that Ω̄ = ∪N

i=0Ω̄i. We assume that

(1.2) κ|Ωi = κi, i = 0, · · · , N,

where each κi is a positive constant, and that Γ is the closure of the union of facets
of one or more Ωi. The coefficient in problem (1.1) may have large jumps across
interfaces between the hypercubes. Consequently, the solution can be expected to
be non-smooth at these interfaces, in particular in directions normal to them. It is
known (see [Kel74]) that for Ω = (−1, 1)2 partitioned into four unit squares, for
any ε > 0, there exists a κ such that, for smooth f , the solution of (1.1) is not in
H1+ε(Ω).

Because of the non-smoothness of the solution, we solve the problem numeri-
cally with an adaptive method, where we take the Adaptive Wavelet-Galerkin Method
(AWGM) ([CDD01, GHS07, Ste09]). To do so, we equip H1

0,Γ(Ω) with a Riesz
basis Ψ = {ψλ : λ ∈ ∇} that has Riesz constants that are bounded uniformly
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