Accepted Manuscript

High-order accurate FDTD schemes for dispersive Maxwell's equations in second-order form using recursive convolutions

M.J. Jenkinson, J.W. Banks

PII: S0377-0427(17)30636-2

DOI: https://doi.org/10.1016/j.cam.2017.12.016

Reference: CAM 11433

To appear in: Journal of Computational and Applied

Mathematics

Received date: 19 June 2017 Revised date: 24 October 2017

Please cite this article as: M.J. Jenkinson, J.W. Banks, High-order accurate FDTD schemes for dispersive Maxwell's equations in second-order form using recursive convolutions, *Journal of Computational and Applied Mathematics* (2017), https://doi.org/10.1016/j.cam.2017.12.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

High-Order Accurate FDTD Schemes for Dispersive Maxwell's Equations in Second-Order Form Using Recursive Convolutions

M. J. Jenkinson^{a,1,*}, J. W. Banks^{a,1}

^aDepartment of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY USA

Abstract

We propose a novel finite-difference time-domain (FDTD) scheme for the solution of the Maxwell's equations in which linear dispersive effects are present. The method uses high-order accurate approximations in space and time for the dispersive Maxwell's equations written as a second-order vector wave equation with a time-history convolution term. The modified equation approach is combined with the recursive convolution (RC) method to develop high-order approximations accurate to any desired order in space and time. High-order-accurate centered approximations of the physical Maxwell interface conditions are derived for the dispersive setting in order to fully restore accuracy at discontinuous material interfaces. Second- and fourth-order accurate versions of the scheme are presented and implemented in two spatial dimensions for the case of the Drude linear dispersion model. The stability of these schemes is analyzed. Finally, our approach is also amenable to curvilinear numerical grids if used with appropriate generalized Laplace operator.

Keywords: Dispersive Maxwell, FDTD, Recursive Convolution, Wave Equations

Contents

1	Intr	roduction	2
2 Go		Governing Equations	
3	Summary of Numerical Scheme		6
	3.1	Second-Order Accurate Scheme for the Drude Model	7
	3.2	Stability of the Second-Order Accurate Scheme for the Drude Media	9
	3.3	Fourth-Order Accurate Scheme for the Drude Model	13
	3.4	Stability of the Fourth-Order Accurate Scheme for Drude Media	16
4	Numerical Compatibility Conditions at Material Interfaces		18
	4.1	Numerical Interface Conditions for the Second-Order Scheme with the Drude Model in 2D	19
	4.2	Numerical Interface Conditions for the Fourth-Order Scheme with the Drude Model in $2\mathrm{D}$	20
5	Numerical Examples		20
	5.1	Periodic Dissipative Plane Wave with Application to Stability	21
	5.2	Eigenfunctions for Perfect Electrical Conductor Boundary Conditions in 2D	21
	5.3	Scattering on Planar Drude Material Interface in Two Dimensions	23
	5.4	Surface Plasmon Polariton at Drude Material Interface in Two Dimensions	26

^{*}Corresponding author.

Email addresses: jenkim2@rpi.edu (M. J. Jenkinson), banksj3@rpi.edu (J. W. Banks)

¹This research was supported by a U.S. Presidential Early Career Award for Scientists and Engineers. This work was also supported, in part, through the NSF Research Training Groups program (DMS-1344962) and was partially performed under DOE contracts from the ASCR Applied Math Program. This work was partially funded by the DARPA Defense Sciences Office.

Download English Version:

https://daneshyari.com/en/article/8902091

Download Persian Version:

https://daneshyari.com/article/8902091

<u>Daneshyari.com</u>